
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS DECEMBER 2017 VOL 32 NO 12

.NET App Migrations
with Docker Containers.....24

 1217msdn_CoverTip_8x10.75.indd 1 1217msdn_CoverTip_8x10.75.indd 1 11/6/17 1:34 PM11/6/17 1:34 PM

www.devexpress.com/try

 1117msdn_CoverTip_8x10.75.indd 2 1117msdn_CoverTip_8x10.75.indd 2 10/11/17 2:05 PM10/11/17 2:05 PM

www.devexpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS DECEMBER 2017 VOL 32 NO 12

Modernize a .NET App with Docker
and Windows Server Containers
Sean Iannuzzi.. 24

A Developer’s Guide to the New Hamburger
Menu in Windows 10
Jerry Nixon.. 34

Customizing Visual Studio for Mac
Alessandro Del Sole. 42

Using Cognitive Services in Mixed Reality
Tim Kulp.. 46

Visual C++ Support for Stack-Based
Buffer Protection
Hadi Brais.. 52

COLUMNS
UPSTART
Managing the Manager:
15 Tips for Working Better
Krishnan Rangachari, page 6

DATA POINTS
Building UWP Apps for Local
and Cloud Data Storage
Julie Lerman, page 8

THE WORKING
PROGRAMMER
How to be MEAN:
Angular Forms, Too
Ted Neward, page 14

ARTIFICIALLY INTELLIGENT
Exploring the Azure Machine
Learning Workbench
Frank La Vigne, page 18

CUTTING EDGE
Configuring ASP.NET
Core Applications
Dino Esposito, page 60

TEST RUN
Understanding k-NN
Classification Using C#
James McCaffrey, page 64

DON’T GET ME STARTED
Crushing It
David Platt, page 72

.NET App Migrations
with Docker Containers.....24

1217msdn_C1_v2.indd 1 11/7/17 12:14 PM

Infragistics Ultimate 17.2
Productivity Tools & Fast Performing UI Controls for Quickly
Building Web, Desktop, & Mobile Apps

Featuring

Create beautiful, touch-fi rst, responsive desktop & mobile wep apps with over 100
JavaScript / HTML5, MVC & Angular components.

Our easy to use Angular components have no 3rd party dependencies, a tiny footprint,
and easy-to-use API.

The Ignite UI Angular Data Grid enables you to quickly bind data with little coding -
including features like sorting, fi ltering, paging, movable columns, templates and more!

Speed up development time with responsive layout, powerful data binding, cross-browser
compatibility, WYSIWYG page design, & built-in-themes.

Ignite UI
A complete UI component library for building high-performance, data rich
web applications

Download a free trial of Ignite UI at: Infragistics.com/Ignite-ui
To speak with our sales team or request a product demo call: 1.800.321.8588

Includes 100+ beautifully styled, high-performance grids, charts & other UI controls, plus
visual confi guration tooling, rapid prototyping, and usability testing.

Angular | JavaScript / HTML5 | ASP.NET | Windows Forms | WPF | Xamarin

Download a free trial at
 Infragistics.com/Ultimate

Untitled-5 2 11/6/17 1:06 PM

www.Infragistics.com/Ultimate

Infragistics Ultimate 17.2
Productivity Tools & Fast Performing UI Controls for Quickly
Building Web, Desktop, & Mobile Apps

Featuring

Create beautiful, touch-fi rst, responsive desktop & mobile wep apps with over 100
JavaScript / HTML5, MVC & Angular components.

Our easy to use Angular components have no 3rd party dependencies, a tiny footprint,
and easy-to-use API.

The Ignite UI Angular Data Grid enables you to quickly bind data with little coding -
including features like sorting, fi ltering, paging, movable columns, templates and more!

Speed up development time with responsive layout, powerful data binding, cross-browser
compatibility, WYSIWYG page design, & built-in-themes.

Ignite UI
A complete UI component library for building high-performance, data rich
web applications

Download a free trial of Ignite UI at: Infragistics.com/Ignite-ui
To speak with our sales team or request a product demo call: 1.800.321.8588

Includes 100+ beautifully styled, high-performance grids, charts & other UI controls, plus
visual confi guration tooling, rapid prototyping, and usability testing.

Angular | JavaScript / HTML5 | ASP.NET | Windows Forms | WPF | Xamarin

Download a free trial at
 Infragistics.com/Ultimate

Untitled-5 3 11/6/17 1:06 PM

http://www.Infragistics.com/Ignite-ui

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published 13 times a year, monthly with a special issue in
November by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid
at Chatsworth, CA 91311-9998, and at additional mailing
offices. Annual subscription rates payable in US funds
are: U.S. $35.00, International $60.00. Annual digital
subscription rates payable in U.S. funds are: U.S. $25.00,
International $25.00. Single copies/back issues: U.S. $10,
all others $12. Send orders with payment to: MSDN
Magazine, P.O. Box 3167, Carol Stream, IL 60132, email
MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN
Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return
Undeliverable Canadian Addresses to Circulation Dept.
or XPO Returns: P.O. Box 201, Richmond Hill,
ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International
Phone: 212-221-9595
E-mail: 1105reprints@parsintl.com
Web: 1105Reprints.com

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct. Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

Chief Marketing Officer
Carmel McDonagh

ART STAFF

Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Senior Art Director Deirdre Hoffman
Art Director Michele Singh
Art Director Chris Main
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF

Print Production Manager Peter B. Weller
Print Production Coordinator Lee Alexander

ADVERTISING AND SALES

Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA

Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer Chris Paoli
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Office Manager & Site Assoc. James Bowling

LEAD SERVICES

Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Director, Custom Assets & Client Services Mallory Bastionell
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos

ENTERPRISE COMPUTING GROUP EVENTS

Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Merikay Marzoni
Events Sponsorship Sales Danna Vedder
Senior Manager, Events Danielle Potts
Coordinator, Event Marketing Michelle Cheng
Coordinator, Event Marketing Chantelle Wallace

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Chief Financial Officer
Craig Rucker

Chief Technology Officer
Erik A. Lindgren

Executive Vice President
Michael J. Valenti

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Jennifer Mashkowski mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,
Ted Neward, David S. Platt
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

DECEMBER 2017 VOLUME 32 NUMBER 12

magazine

1217msdn_Masthead_v2_2.indd 2 11/7/17 12:25 PM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
mailto:jlong@meritdirect.com
http://1105Reprints.com
http://meritdirect.com/1105

Untitled-1 1 11/6/17 1:17 PM

www.leadtools.com

msdn magazine4

© 2017 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

MICHAEL DESMONDEditor’s Note

When the Windows XAML team at Microsoft developed the new
NavigationView control as part of the Windows 10 Fall Creators
Update, it addressed an important gap in the Universal Windows
Platform (UWP) UI. As Jerry Nixon writes in his feature this
month, “A Developer’s Guide to the New Hamburger Menu in
Windows 10,” internal Microsoft development teams were looking
for ways to improve visual alignment and consistency across their
portfolio of apps—something that proved difficult to do with the
existing SplitView control.

“The internal teams were creating their own hamburger imple-
mentations, but they needed to ensure consistent user experience
across modalities like pen, ink and touch,” Nixon explains. “They
also had very specific requirements around accessibility that were
difficult to achieve.”

The NavigationView control helped resolve those challenges,
enabling the teams to fine-tune app UXes to meet specific require-
ments, while providing all the benefits of an in-box control. As Nixon

notes, Microsoft-built controls meet “stringent performance,
design, localization, support and accessibility requirements that
most third-party and open source projects do not.”

Even as Microsoft improves the state of the art in its UWP XAML
controls, the company continues work to unify XAML dialects like
UWP XAML and Xamarin.Forms around a single target. The XAML
Standard specification defines a common XAML vocabulary that
enables supporting frameworks to share XAML-based UI defini-
tions. It’s a tricky business that requires balancing the interests of
incumbent Windows Presentation Foundation (WPF) and Silverlight
developers while winning over UWP and Xamarin programmers.
The payoff for those last two audiences, Nixon says, could be big.

“Xamarin is proposing that with XAML Standard they can transpile
a UI design into many different platforms, including UWP. This
means a developer can write once and get many out of it, but the
resulting app for UWP is still UWP XAML transpiled from XAML
Standard,” Nixon explains. “When a developer wants to enhance
an app on Android or Windows, it takes those specific skills to be
successful. So, it does not eclipse UWP as much as it accelerates it.”

Nixon also singles out useful new capabilities like Conditional
XAML, which, starting with the Windows 10 Fall Creators
Update, allows developers to set properties and instantiate objects
at run time based on the presence of a detected API. Conditional
XAML lets developers fully optimize the UX while preserving
backward compatibility.

As Nixon concludes near the end of his feature article, “No
control meets the needs of every developer. No API meets the
needs of every design.” That’s certainly true of XAML, which
remains a platform in progress with a diverse constituency spanning
multiple frameworks and device families. But with its continuing
investments, both in tooling and controls and in the larger-scope
XAML unification effort, Microsoft seems determined to expand
the utility and appeal of XAML.

And it all begins with
a hamburger.

Hamburger Helper

Nixon also singles out useful
new capabilities like Conditional

XAML, which, starting with
the Windows 10 Fall Creators
Update, allows developers to
set properties and instantiate

objects at run time based on the
presence of a detected API.

1217msdn_DesmondEdNote_v1_4.indd 4 11/8/17 9:50 AM

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

Untitled-6 1 3/6/17 2:32 PM

www.nsoftware.com

msdn magazine6

Broadly speaking, engineering managers span the spectrum from
micromanagers to completely hands-off bosses. The challenge for
developers is understanding how to “manage up,” no matter where
their managers are on the spectrum. Here are 15 ideas that can help:

Hands-off Managers
1. Mimic. It’s tempting to over-communicate with hands-off man-
agers, sending them detailed status reports or describing everything
you’re up to. Unconsciously, you may want to “prove” to them that
you’re trustworthy and independent. Instead, be hands-off with
them! For instance, loop them in only when you have high-impact
news to share, or when you need their help.

2. Vindicate. With this approach, a hands-off manager is trusting
you by default, until you give her reason to think otherwise. Fulfill this
trust by being thorough, conscientious, detail-oriented and honest
in your projects. The more you do this, the more freedom you earn.

3. Escalate. Sometimes, a hands-off approach may not be in
the best interest of the team or project. In such a situation, it’s OK
to request more support and hand-holding. Most managers will
happily oblige—in fact, they may have been waiting for you to ask!

4. Reinforce. If you like managers who are hands-off, tell them so,
regularly, and explain why. This encourages them to relax even more.

5. Credit. Make a point to share credit with your hands-off
manager, even if she plays only a passing role in a project. Identify
her as a co-creator or co-author. This isn’t empty praise. Your man-
ager’s limited involvement is often instrumental to your success
and growth.

Micromanagers
1. Object. It can be important to set limits with an overly active
manager. If you have a valid complaint, approach the conversation
so that it’s about how you feel, rather than what they did wrong.
Focus on what you and your manager can do together to improve
things. As an example, you could say, “When you did X, it made
me feel Y. What can we do together to avoid this in the future?”

2. Prevent. Signs of trouble can be spotted before you ever take
a job, such as in the way your future manager negotiates salary or
title, deals with an offer deadline, or speaks about his colleagues
or bosses. You can honor those red flags by not taking the role.

3. Tolerate. Anytime I’ve made a “dramatic exit” to make a
point, by walking out on a micromanager, I’ve come to regret it. It
weakens my bonds to everyone on that team and closes the door

on future opportunities. If you do feel the need to leave the team,
wait until you no longer feel furious.

4. Flex. You might disagree with a micromanager’s approach to
a project, but implementing her direction can actually help expand
your worldview. By accepting her opinion over your personal judg-
ment, you learn how to not be overly wedded to your beliefs—and
occasionally, you may even start to see the validity of hers.

5. Silence. If your micromanager insults or railroads you,
silence might be the best (and only!) viable response. Other times,
you could say, “I don’t know right now,” or, “I feel overwhelmed,
so let me think about it.” More broadly, you could even reframe
your entire relationship with your manager, viewing it as a vehicle
for serving others and learning to accept those who are different.

All Managers
1. Lead. Most managers care about the quality of your work, and the
results you achieve, regardless of their level of day-to-day involve
ment. So, in your chats with them, focus on high-level outcomes.
You can also describe steps you’re taking to ensure highest-quality
results. This approach elevates your conversations to focus on how
you work and what you achieve, rather than the nitty-gritty of daily
bug fixes or implementation details.

2. Delimit. When you ask your manager for help, focus her
attention by being very specific in your ask. This helps ground your
manager’s thinking to produce actionable advice.

3. Connect. Managers are human, so you can consciously
deepen your personal relationship with them. If you genuinely
care, you can ask them about their family, health, hobbies and
the like. These conversations deepen your understanding of your
manager, and the shared vulnerability from them can bring both
of you closer together.

4. Schedule. It’s good to schedule separate one-on-one time with
managers devoted solely to the discussion of your career goals and
performance. These focused discussions allow them to be hands-on
in growing your responsibilities and career.

5. Clear. Identify your manager’s top-of-mind priorities, then
go to work on one of those. You’ll not only accelerate your growth,
you’ll also train yourself to be more perceptive.	 n

Krishnan Rangachari is an advisor to CTOs, CIOs, and VPs of Engineering on
organizational transformation, culture creation, and engineering leadership. Visit
RadicalShifts.com for his private newsletter and webinars.

Managing the Manager:
15 Tips for Working Better

Upstart KRISHNAN RANGACHARI

1217msdn_RangaUpstart_v3_6.indd 6 11/7/17 12:18 PM

http://RadicalShifts.com

Untitled-6 1 10/11/17 12:57 PM

www.devexpress.com/spreadsheet

msdn magazine8

This is the first of a multi-part series that will
show you how to store data on a device run-
ning a Universal Windows Platform (UWP)
app, as well as how to store the app’s data in the
cloud. This article will focus on the local stor-
age using Entity Framework Core (EF Core)
and a SQLite database. The subsequent parts
will add in capabilities to store and retrieve
the UWP app data to the cloud using Azure
Functions and Azure Cosmos DB.

In the early days of EF Core, when it was still
called EF7, I took advantage of its new abili-
ty to run not just on a full .NET Framework
setup, but on devices, as well. In my first
Pluralsight course on EF7 (which was designed
as a preview of the features being built), I
created a small and quite silly game called
Cookie Binge. It ran on Windows Phone 8 and
as a Windows Store app for Windows 8, stor-
ing its data locally using EF7 and SQLite. The
game was a spinoff of a demo app built by the
EF team that focused on capturing unicorns.
The CookieBinge game lets you eat cookies
(by clicking on them) and when you’re finished binging, you indi-
cate either that the spree was totally worth it or that you feel guilty
for scarfing down all those cookies. The number of cookies you
consume becomes your score and your selection of “worth it” or
“guilty” is tied to the score in the game’s history. It’s a silly game
with no real goal, just my way of exploring how to incorporate
EF 7/Core into a mobile app.

When EF Core was released in 2016, I evolved the game to run
as a Universal Windows Platform (UWP) app, which could be
played on any device running Windows 10. The recently released
EF Core 2.0 now has a dependency on .NET Standard 2.0. The latest
version of UWP, which targets the just-released Windows 10 Fall
Creators Update, also relies on .NET Standard 2.0, allowing you to use
EF Core 2.0 in this new generation of UWP apps.

That means it’s time for me to update the CookieBinge app yet
again, this time to EF Core 2.0. The only way to do that is to also
update the UWP app to target the new version of Windows 10.

Keep in mind that my focus will remain on the data access, not
on designing the UI of the app to benefit from the features of
Windows 10. Additionally, I won’t cover the new features of EF
Core 2.0 in this example. Instead, I’ll be looking at the ability to
combine these two technologies.

I’ll build the application from scratch, rather than updating the
existing app, so you can follow along. After I get the game updated
to EF Core 2.0, I’ll add a new feature to allow sharing of scores
with other game players. To accomplish this, in addition to storing
scores locally on the game device, the app will leverage Azure
Functions and Azure Cosmos DB so users can share their scores
around the globe. I’ll perform these tasks in subsequent install-
ments of this series.

Your Dev Environment
Although EF Core can be built and run on cross-platform environ-
ments, UWP is a Windows-only platform, so you’ll need to do this
work on a Windows machine. To be specific, you’ll need Windows
10 Fall Creators Update and Visual Studio 2017 version 15.4 (or later)
installed. Visual Studio doesn’t install the .NET Standard 2.0 SDK,

Building UWP Apps for Local
and Cloud Data Storage

Data Points JULIE LERMAN

Code download available at msdn.com/magazine/1217magcode.

Figure 1 Creating a UWP Project from the Blank App Template

1217msdn_LermanDPts_v5_8-12.indd 8 11/7/17 12:24 PM

http://msdn.com/magazine/1217magcode

9December 2017msdnmagazine.com

so you must install that manually. You’ll find
links to the .NET Standard downloads at
bit.ly/2mJArWx. You’ll see that you can down-
load either the runtime or the SDK (which
includes the runtime). Select the SDK down-
loads appropriate for your machine.

Be sure to install the UWP tooling for
Visual Studio, which you can do by select-
ing the UWP workload in the Visual Studio
installer. If you don’t have the Windows 10
SDK build 16299 enabled in the workload,
please make sure to do that.

An Early-Adopter Caveat
Note that as I’m writing this, EF Core 2.0 is
not wholly aligned with the new version of
UWP, though some fixes are coming soon
in the 2.0.1 patch. For example, there’s a cur-
rent bug with executing relational queries
when in a UWP project. My sample avoids
this problem. You can track the issues on the
EF Core GitHub repository at bit.ly/2xS35Mq.

Creating the New UWP Project
Once all of the proper tooling is installed,
Visual Studio will display a set of UWP proj-
ect templates in a section named Windows
Universal. From that set of templates, I’ll
create a new Blank App (Universal Windows). The framework
dropdown defaults to 4.7.1 (although the .1 is cut off in Figure 1)
and I’ll leave that default as the base version of .NET Framework
for my app. I named the new project CookieBinge2.

You’ll be prompted to select a target version and a minimum
version of UWP. Be sure to choose Windows 10 Fall Creators
Update for both. The current build number is 16299.

When the project is created, you’ll see the files and folder in
Solution Explorer, as shown in Figure 2.

Because this column is focused on data, not UI building, I’ll take
some shortcuts to get the UI in place, then add in the APIs and
code for EF Core and its data-persistence activities.

You’ll find the necessary code to copy and paste in the down-
load associated with this column. To start, delete the images in the
new project’s Assets folder and in their place, copy the images from
the Assets folder (shown in Figure 3) provided in the download.

Adding in Persistence Logic with EF Core 2.0
You’ll start by adding two classes to the project, as follows.

The CookieBinge.cs class is not much more than a DTO, con-
taining only properties that need to be stored. There’s no real logic
that needs to be performed. Here’s the class:

public class CookieBinge {
 public Guid Id { get; set; }
 public DateTime TimeOccurred { get; set; }
 public int HowMany { get; set; }
 public bool WorthIt { get; set; }
}

The BingeService class encapsulates the tasks I determined this

game needs to perform, serving to marshal
information between the UI and the data
store. BingeService has three methods:
RecordBinge (to persist the results locally),
GetRecentBinges (to retrieve a subset of
the game scores) and ClearHistory (to clear
all results from the local store). Here’s the
class before the logic of those methods has
been implemented:
 public static class BingeService {
 public static void RecordBinge(
 int count, bool worthIt) { }
 public static IEnumerable<CookieBinge>
 GetRecentBinges(int numberToRetrieve)
 public static void ClearHistory() { }
 }

In order to flesh out the service, I need to
add in the persistence functionality. This is
where EF Core 2.0 comes in to read and store
the binge results to the device. EF Core has
a provider for SQLite databases, which can
be used directly on a variety of devices, so
that’s what I’ll use for this demo.

Now that I’ve chosen the data store, I can
add the EF Core provider for SQLite into
my app and it will, in turn, pull in the related
EF Core packages it relies on, including
SQLite if needed. EF Core is no longer one
big package. Instead, the logic is divided into
various assemblies, so you can minimize its

footprint on your device (or server or wherever you deploy it) with
only the subset of logic your application requires.

In Visual Studio 2017, you use the NuGet Package Manager to add
NuGet packages into your projects—either visually or via Power
Shell commands such as install-package. I’ll use the PowerShell
commands, which means opening the Package Manager Console
(Tools | Manage NuGet Packages | Package Manager Console). As
I have only one project in my solution, the console should indi-
cate that CookieBinge2 is the default project, as shown in Figure
4. There I can install the SQLite provider package.

When the installation is complete, you’ll see this package listed
in the project references in Solution Explorer. For the curious,

Figure 2 The Project as Initially Creat-
ed by the Template

Figure 3 The Images You’ll Be Copying
into the Assets Folder

In Visual Studio 2017, you use
the NuGet Package Manager to
add NuGet packages into your
projects—either visually or via
PowerShell commands such

as install-package.

1217msdn_LermanDPts_v5_8-12.indd 9 11/7/17 12:24 PM

http://www.msdnmagazine.com
www.bit.ly/2mJArWx
www.bit.ly/2xS35Mq

msdn magazine10 Data Points

if you force Visual Studio to show all files, expand the obj folder
and then open the project.assets.json file, you’ll be able to see the
dependencies that were pulled in by the SQLite provider, such as
Microsoft.EntityFrameworkCore, Microsoft.EntityFrameworkCore.
Relational and others. With EF Core and the SQLite provider in
place, you can now create the DbContext. Add a new file named
BingeContext.cs and copy the code listed in Figure 5.

Because this DbContext is in the UWP project, I’m taking advan-
tage of available resources such as System.IO and Windows.Storage
APIs. The download for this article will reflect this pattern. In
contrast, another version of the app on my GitHub account
(bit.ly/2liqFw5) has the back-end logic and EF Core in a separate .NET
Standard Class Library project and uses dependency injection
to provide the file path to the context. If you plan to use EF Core
migrations to evolve the model and database schema, you’ll need
to use that separated architecture.

The context has a single DbSet to interact with CookieBinge
data. The code in the OnConfiguring method lets EF Core know
that it will use the SQLite provider and specifies a local file path for
storing the data on the device where the app is running.

Now that the context is there, I can flesh out the BingeService
methods. RecordBinge will take in values sent from the UI, build
up a CookieBinge object and pass that on to the BingeContext to
store into the local database:

public static void RecordBinge(int count, bool worthIt) {
 var binge = new CookieBinge {
 HowMany = count,
 WorthIt = worthIt,
 TimeOccurred = DateTime.Now};
 using (var context = new BingeContext()) {
 context.Binges.Add(binge);
 context.SaveChanges();
 }
}

The GetRecentBinges method will retrieve data from the locally
stored database using the BingeContext and pass it back to the UI
that made the request and has a panel to display that data:

 public static IEnumerable<CookieBinge> GetRecentBinges(
 int numberToRetrieve) {

 using (var context = new BingeContext()) {
 return context.Binges
 .OrderByDescending(b => b.TimeOccurred)
 .Take(numberToRetrieve).ToList();
 }
}

The final method in BingeService, ClearHistory, empties out the
local database completely—in case you don’t want to be tormented
by the excessive amount of binging you’ve done:

public static void ClearHistory() {
 using (var context = new BingeContext(){
 context.Database.EnsureDeleted();
 context.Database.EnsureCreated();
 }
}

This takes care of the back end of the game’s logic.

The UI and Its Logic
The front end consists of the UI
(MainPage.xaml), UI logic (Main-
Page.xaml.cs) and the BingeView-
Model.cs file. There are a number of
methods in these classes of interest
to the functionality I’ve created in
the back end. In MainPage.xaml.cs,

there are two methods that call into the BingeService class. The
ReloadHistory method calls the GetRecentBinges method and
binds the results to a list on the UI:

private void ReloadHistory() {
 BingeList.ItemsSource = BingeService.GetRecentBinges(5);
}

The ClearHistory method calls the service method to purge all
of the data from the local database and then forces the UI to reload
its display of the history, which will now be empty:

private void ClearHistory_Click(object sender, RoutedEventArgs e) {
 BingeService.ClearHistory();
 ReloadHistory();
}

There are also methods in the UI that respond to the user click-
ing the Worth It and Not Worth It buttons to store the results,
but these don’t call the service directly. Instead, they call into the
BingeViewModel method, StoreBinge, which then calls the ser-
vice method to store the data. The StoreBinge method first calls
the service method, passing along the data from the UI:

BingeService.RecordBinge(_clickCount, worthIt);

using System;
using System.IO;
using Microsoft.EntityFrameworkCore;
using Windows.Storage;

namespace CookieBinge2 {
 public class BingeContext:DbContext {
 public DbSet<CookieBinge> Binges { get; set; }
 protected override void OnConfiguring(DbContextOptionsBuilder options){
 var dbPath = "CookieBinge.db";
 try {
 dbPath = Path.Combine(ApplicationData.Current.LocalFolder.Path, dbPath);
 }
 catch (InvalidOperationException){
 #TODO handle this exception
 }
 options.UseSqlite($"Data source={dbPath}");
 }
 }
}

Figure 5 The DbContext Class to
Manage Persistence with EF Core

This separation of concerns
that results in passing data from

one file to another allows for
future maintenance of this

app to be simpler.

Figure 4 Installing the SQLite Package in the Package Manager Console Window

1217msdn_LermanDPts_v5_8-12.indd 10 11/7/17 12:24 PM

www.bit.ly/2liqFw5

Amyuni DOCX Converter
for Windows

www.docxconverter.com

Convert any document, including PDF documents, into DOCX format.
Enable editing of documents using Microsoft Word or other Office products.

Powered by Amyuni Technologies:
Developers of the Amyuni PDF Converter and Amyuni PDF Creator products integrated into

hundreds of applications and installed on millions of desktops and servers worldwide.

Free Demo at DOCXConverter.com

Create naturally editable DOCX
documents with paragraph
formatting and reflow of text

Extract headers and footers from
source document and save them
as DOCX headers and footers

Open PDF documents with the
integrated PDF viewer and quickly
resave them to DOCX format

Configure the way the fonts are
embedded into the DOCX file
for optimal formatting

Convert images and graphics
of multiple formats into
DOCX shapes

Use OCR technology to convert
non-editable text into real text

Create

Extract

Convert

Open

OCR

Configure

A standalone desktop version, a server product
for automated processing or an SDK for
integration into third party applications.

A virtual printer driver available for Windows 7 to Windows 10
and Windows Server 2008 to 2016

All trademarks are property of their respective owners. © Amyuni Technologies Inc. All rights reserved.

MSDN Ad DOCX Converter 02.indd 1 04/11/2017 15:22
Untitled-1 1 11/6/17 12:24 PM

http://www.docxconverter.com

msdn magazine12 Data Points

StoreBinge also performs some additional magic in the UI to
clean up the just-finished binge and prepare the UI for a new binge.
You can see this additional code in the download.

This separation of concerns that results in passing data from
one file to another allows for future maintenance of this app to be
simpler. Fortunately for me, the code changes as I’ve transitioned
the app from EF7 to EF Core 1 to EF Core 2 have been minimal.

There’s one last task to perform, which is to trigger the appli-
cation to make sure that the local database file exists. In the App.
xaml file, add the following code into the constructor method
after this.Suspending += OnSuspending:

using (var context = new BingeContext()) {
 context.Database.EnsureCreated();

In the separated architecture on GitHub where you can use mi-
grations, you’ll see a call to the Migrate command after Ensure
Created to make sure any model changes are applied.

Running the App
In Visual Studio, you target either
the local machine, or the simulator,
which opens up a separate window
that simulates your local machine,
to run or debug the app. There’s
also an emulator for HoloLens
available at bit.ly/2p8yRMf. I’ll just
run my app on the local machine.
Figure 6 shows the game play with
a hint of the computer desktop
background around the edges. Each
click on the cookie displays the word
“Nom!” at the mouse pointer and
increments the “Cookies Eaten”
counter. When satiated, the user
clicks either the cool blue icon or
the dead as a doornail icon to com-
plete the game. Figure 7 shows the
Scores page, displaying the last five
scores along with the Clear History
button. This UI is just what a data
geek could hack together. For proper
UWP UI design guidance, you’ll

find a great place to get started at bit.ly/2gMgE74.

Coming Up: Sharing with Other Players
via Azure Functions and Cosmos DB
If you can forgive the simplicity of my little game and design, the
focus of the lesson here is that EF Core can now work directly on
a device because it now relies on .NET Standard, not the full .NET
Framework, and UWP supports .NET Standard. This means you
can now use EF Core 2 in UWP apps on a variety of Windows 10
devices, such as HoloLens, Xbox, Windows Mixed Reality and more.

I’ve used EF Core 2.0 to store data locally on the device where
the CookieBinge game is being played. In my next column I’ll
prepare for a new set of capabilities to the game by tying it to the
Web. Using Azure Functions, the app will be able to send scores to
an Azure Cosmos DB database, allowing users to compare their
own scores across the various UWP devices they play on, as well as
compare their cookie binging to other bingers around the world.
Azure Functions and Azure Cosmos DB will keep me covered as
my Cookie Binge game dominates the globe and needs to scale at
the click of a button.	 n

Julie Lerman is a Microsoft Regional Director, Microsoft MVP, software team men-
tor and consultant who lives in the hills of Vermont. You can find her presenting
on data access and other topics at user groups and conferences around the world.
She blogs at the datafarm.com/blog and is the author of “Programming Entity
Framework,” as well as a Code First and a DbContext edition, all from O’Reilly
Media. Follow her on Twitter: @julielerman and see her Pluralsight courses at
juliel.me/PS-Videos.

Thanks to the following Microsoft technical expert for reviewing this article:
Clint Rutkas

Figure 7 The History Stored in the Local
Database via EF Core

Figure 6 Binging on the Cookie;
Six Eaten So Far

In Visual Studio, you target
either the local machine or the
simulator, which opens up a

separate window that simulates
your local machine, to run or

debug the app.

1217msdn_LermanDPts_v5_8-12.indd 12 11/7/17 12:24 PM

www.bit.ly/2p8yRMf
www.bit.ly/2gMgE74
http://juliel.me/PS-Videos
www.twitter.com/julielerman

Americas: +1 903 306 1676 EMEA: +44 141 628 8900 Oceania: +61 2 8006 6987
sales@asposeptyltd.com

File Format APIs

Untitled-1 1 11/6/17 12:31 PM

https://downloads.aspose.com
mailto:sales@asposeptyltd.com

msdn magazine14

Welcome back again, MEANers.
In the last column (msdn.com/magazine/tktktktk), I talked about how

to create forms with Angular, but candor compels me to admit a
rather severe fact: I’ve really only begun to scratch the surface of
the capabilities of Angular regarding forms, input, validation and
more. For example, in the previous version of Angular (the not-at-
all-confusing version called AngularJS), it was possible to set up
“two-way binding” so that form input modified an ECMAScript
object held in memory within the browser, which meant code
could worry about model objects and not the input fields con-
taining the data.

Angular hasn’t abandoned that concept, but it was necessary
to show you the syntax for event binding against input controls
before we could get there. Now that you’ve seen it, you can begin
to explore Angular form capabilities in greater depth.

SpeakerUI
In the last column, I showed you how to build a component called
SpeakerEdit that captured user input. Bah. How entirely un-com-
ponent-oriented of me. What you really should want, if this is
going to take a truly component-oriented approach, is to encap-
sulate the details of displaying or editing a Speaker. That is, you
want a component that can be handed a Speaker model object (for
edit/update or even delete), a Speaker ID (meaning the Speaker
model object needs to be fetched from the server), or “undefined”
(in which case you’re asking the user to populate a new Speaker
model object), and “do the right thing” in each case. In short,
the component should know already what to display and how
to display it, based solely on the contents (or lack thereof) of a
corresponding Speaker object.

Let’s start by generating a SpeakerUI component. (I tend to use
“UI” as a suffix, to indicate that this is intended as a standalone UI
component around the Speaker model type. Some readers may
prefer “SpeakerDetail,” because this is allowing for the view or edit
of the different details of a Speaker model. As always, whichever
convention you choose, stick with it.) This is comfortable territory
for you by now: “ng generate component SpeakerUI.”

However, I’m going to make a slight addition to Speaker, to help
show off some of the power of the TypeScript language when it
comes to UI. To demonstrate a few different things, I’m going to
mention that in between the last column and this, the application’s
client has said that Speakers have one or more Subjects on which
they speak, like so:

import { Upvote } from './upvote/upvote';
import { Subject } from './subject';

export class Speaker {
 id: number;
 firstName: string;
 lastName: string;
 votes: Upvote;
 subjects: /*something*/[];
}

The Subject type will be defined in subject.ts, but you have a couple
of options here. If subject makes sense to model as a string—meaning
the actual value will be a raw, unadorned TypeScript string—but
can only be of a few values, then you can use a TypeScript “string
literal type” in TypeScript, like so:

export type Languages = "C#" | "Visual Basic" |
 "F#" | "ECMAScript" | "TypeScript"

Essentially, it’s an enumerated string—instances of Subject can only
be populated with the values specified in the “or”-style assignment
expression, in this case, one of five different Microsoft languages.
That said, however, as of TypeScript 2.4, it’s also possible to write a
full-blown enumerated type using string backing for storage, like so:

export enum Subject {
 CSHARP = 'C#', FSHARP = 'F#',
 VB = 'Visual Basic', ES = 'ECMAScript',
 TS = 'TypeScript'
}

This will have a few benefits when you get to modeling the
checkboxes that will hold these five values for selection; the draw-
back to using the enumerated type, of course, is that it cannot
hold anything other than one of the five possible Subject values.
(Languages is, at heart, a string, and so any one of its five values
can be stored as a string, which could of course be in a dropdown,
or you could have an open-ended edit field allow users to type in
other values beyond these.)

Let’s assume the enum is the preferred choice for now, and that
the Speaker has an array of Subject instances, called “subjects.”
That’s all to be done with that for now.

Editing? Or Just Viewing?
From a UI perspective, it’s usually preferential if the UI component
can know whether the instance being displayed is being edited or just
examined; sometimes you’ll merely want to display the details of the
Speaker, whereas at other times, you’ll want to be able to edit them.
The UI will often want to display the details differently when being
edited (using edit field controls) than when being viewed (just leaving
it as plain text) so as to provide a clear hint to the user when some-
thing is editable. Angular supports this, in a slightly roundabout way.

How To Be MEAN: Angular Forms, Too

The Working Programmer TED NEWARD

1217msdn_NewardWProg_v2_14-17.indd 14 11/7/17 12:17 PM

https://msdn.microsoft.com/en-us/magazine/mt845619

Data Quality Made Easy.
Your Data, Your Way.

Start Your Free Trial
www.Melissa.com/msft-pd

@

NAME

Our data quality solutions are available
on-premises and in the Cloud – fast,
easy to use, and powerful developer
tools and plugins for the Microsoft®
Product Ecosystem.

Melissa provides the full spectrum of data

quality to ensure you have data you can trust.

We profile, standardize, verify, match and

enrich global People Data – name, address,

email, phone, and more.

 1-800-MELISSA

Melissa Data is Now Melissa.
Why the change?
See for Yourself at the New www.Melissa.com

Untitled-5 1 3/10/17 1:19 PM

http://www.Melissa.com/msft-pd
http://www.Melissa.com

msdn magazine16 The Working Programmer

To begin, you need the component to know whether it’s readonly
or not; the easiest way to model that is to have a private Boolean
field in the component by that exact name:

@Component({
 selector: 'app-speaker-ui',
 templateUrl: './speaker-ui.component.html',
 styleUrls: ['./speaker-ui.component.css']
})
export class SpeakerUIComponent implements OnInit {

 @Input() model: Speaker | number | undefined;
 public readonly = true;

Defaulting readonly to true is a matter of personal taste or
application context.

Once that field is established, the template can differentiate
between the two states, and choose between one of two different
div sections in the template by setting the div hidden attribute to
true or false accordingly:

<form>
 <div [hidden]="readonly">
 ...
 </div>
 <div [hidden]="!readonly">
 ...
 </div>
</form>

Here, the first section is hidden if the readonly flag is set; that
makes it the editable section displayed; the second section, therefore,
is the read-only section (that’s to say, it’s not hidden if the compo-
nent isn’t read-only). Notice how the property-binding syntax (the
square brackets) is used to bind to the component’s readonly field,
inverting it when necessary using the Angular expression syntax.

Viewing
The second readonly section is pretty straightforward: Simply
use the Angular double-bracket syntax to display the values of
the model’s fields, and display a button labeled Edit to kick the
component over into editing mode when the user wants to edit
the Speaker instance:

<form>
 <div [hidden]="readonly">
 ...
 </div>
 <div [hidden]="!readonly">
 FirstName: {{model.firstName}}

 LastName: {{model.lastName}}

 Subjects: {{model.subjects}}

 <button (click)="edit()">Edit</button>
 </div>
</form>

The edit function on the component will flip the readonly field
to false, but this brings up an interesting question of functionality.
Normally, when some kind of editing is presented to the user, there’s
also an opportunity to undo that editing and go back to the original
state via a Cancel button. If that functionality is wanted or needed here,
then you need to cache off the original values for later retrieval if the
user selects Cancel. Therefore, a new field, cached (of Speaker type),
should be added and the current model values copied over into it:

edit() {
 this.readonly = false;

 this.cached = new Speaker();
 this.cached.id = (<Speaker>this.model).id;
 this.cached.firstName = (<Speaker>this.model).firstName;
 this.cached.lastName = (<Speaker>this.model).lastName;
 this.cached.votes = (<Speaker>this.model).votes;
 this.cached.subjects = (<Speaker>this.model).subjects;
}

This will bring the UI into editing mode.

Editing
Editing, then, uses input fields instead of the double-bracketed syn-
tax, but Angular holds another surprise: You can use the ngModel
directive to help Angular provide some additional form-relevant
behavior, such as automatically double-binding the model (the
Speaker object) to the various form fields, and giving some pre-
defined behavior for when fields get edited.

The first step is to tell Angular that this is a form for which model
support is wanted; this is done by creating a template variable ref-
erence for the form object on the form tag in the template:

<form #speakerForm="ngForm">
 ...
</form>

This tells Angular that you want Angular to “do its form thing.”
From there, you can use the ngModel attribute on the different
input fields to provide clear binding from field to model without
requiring any additional work, as shown in Figure 1.

There’s several interesting things going on in Figure 1.
First, notice the “{{diagnostic}} at the bottom of the form; this is

a useful trick to see what’s going on inside the component as you’re
editing/viewing the component. To do this on your own compo-
nents, define a property-get method called diagnostic that dumps
interesting elements:

get diagnostic() {
 return 'readonly:' + this.readonly + ';'
 + 'cached:' + JSON.stringify(this.cached) + ';'
 + 'model:' + JSON.stringify(this.model);
}

This is useful to see that Angular literally changes the model object
in memory in response to each and every keystroke that appears in the
input forms. (It’s also useful to help make sure that the caching behav-
ior—for cancellation support—is behaving correctly, though realistically
that should be unit-tested before accepting it as genuine and bug-free.)

<form #speakerForm="ngForm">
 <div [hidden]="readonly">
 FirstName: <input name="firstName" type="text"
 [(ngModel)]="model.firstName">

 LastName: <input name="lastName" type="text"
 [(ngModel)]="model.lastName">

 Subjects: {{model.subjects}}

 <button (click)="save()"
 [disabled]="!speakerForm.form.valid">Save</button>
 <button [disabled]="speakerForm.form.pristine"
 (click)="cancel()">Cancel</button>

{{diagnostic}}
 </div>
 <div [hidden]="!readonly">
 . . .
 </div>
</form>

Figure 1 Using the ngModel Attribute

Defaulting readonly to true
is a matter of personal taste or

application context.

1217msdn_NewardWProg_v2_14-17.indd 16 11/7/17 12:17 PM

msdnmagazine.com

dtSearch.com 1-800-IT-FINDS

 The Smart Choice for Text Retrieval®

since 1991

dtSearch’s document filters support
popular file types, emails with multilevel
attachments, databases, web data

Developers:
• APIs for .NET, Java and C++
• SDKs for Windows, UWP, Linux,

Mac and Android
• See dtSearch.com for articles on

faceted search, advanced data
classification, working with SQL,
NoSQL & other DBs, MS Azure, etc.

Visit dtSearch.com for
• hundreds of reviews and case studies
• fully-functional evaluations

Instantly Search
Terabytes of Data
across a desktop, network, Internet or
Intranet site with dtSearch enterprise
and developer products

®

Over 25 search features, with easy
multicolor hit-highlighting options

Second, notice how the firstName and lastName input fields have
a dual-mode binding attribute on them called ngModel, referencing
the property of the model object to which these fields should be
bound. The dual-mode binding (the [(…)] syntax) suggests that
changes to either the underlying model or the UI will be automatically
reflected in the other, leaving little to do programmatically here. This
is almost identical to the two-way binding from AngularJS, which
was always one of the strengths of that framework.

Finally, notice how the Save button is only enabled if speaker
Form.form (the form object defined via the # syntax in the form
element) has a valid property that’s false. Valid is one of several prop-
erties the form exposes to indicate whether the form would require
a save. Several other properties are present, including the pristine
property referenced in the Cancel button, but that discussion has to
be deferred until the next column, when I talk about form validation.

The save and cancel methods, then, are pretty easy to imagine:
save() {
 this.cached = undefined;
 this.readonly = true;
}
cancel() {
 this.readonly = true;

 // Bring back cached values
 this.model = this.cached;

 // Clear out cache
 this.cached = undefined;
}

Again, all of this is simply manipulating the two-state state
machine to go back and forth between editing and viewing mode
with cancel support.

Wrapping Up
With a quick dip of the pen (so to speak), I’ve opened up a fairly large
subject, to be sure. Angular’s support for form-based input is exten-
sive, to say the least, particularly when combined with some of the
component lifecycle methods, such as ngOnInit, where some initial-
ization will usually take place to establish the initial contents of the
UI. In the SpeakerUI, for example, ngOnInit will look at the model
input property, and if it’s undefined, assume a new Speaker is being
created; if it’s a number, assume that ID from the SpeakerService needs
to be fetched; and if it’s a Speaker object, assume that’s the object wanted
to use as the model. It would be reasonable to assume that other
lifecycle methods could play a part in the component’s interaction
with the surrounding system, as well, depending on circumstances.

In the next column, I’ll look at the form validation capabilities of
Angular, so that both a first and a last name must be required of the
speakers, among other things. I’ll also examine how new subjects
on Speakers can be captured, and toss in the Upvote component
that was constructed oh-so-long ago. In the meantime, however
… Happy coding!	 n

Ted Neward is a Seattle-based polytechnology consultant, speaker and mentor, cur-
rently working as the director of Developer Relations at Smartsheet.com. He has writ-
ten a ton of articles, authored and co-authored a dozen books, and speaks all over the
world. Reach him at ted@tedneward.com or read his blog at blogs.tedneward.com.

Thanks to the following technical expert for reviewing this article:
Garvice Eakins

1217msdn_NewardWProg_v2_14-17.indd 17 11/7/17 12:17 PM

mailto:ted@tedneward.com
www.dtSearch.com
http://www.msdnmagazine.com
http://blogs.tedneward.com

msdn magazine18

In the last two columns, I explored the
features and services provided by Azure
Machine Learning Studio. In Septem-
ber 2017, Microsoft announced a new
suite of tools for doing machine learn-
ing (ML) on Azure. The cornerstone
of these new tools is Azure Machine
Learning Workbench. However, what
could be better for doing ML than the
simple drag-and-drop interface of
Machine Learning Studio?

Machine Learning Studio is an ideal
tool for creating ML models without
having to write code, but it falls short
in several areas. First and foremost, the
tool’s simplicity requires a “black box”
approach. There’s no visibility into the
algorithms being used, and only param-
eters that are exposed in the UI can be

manipulated. Source control is effec-
tively nonexistent. While the Run His-
tory makes it possible to access previous
versions of a project, Machine Learning
Studio lacks integration with conven-
tional source control tools such as Git.
Finally, managing the deployment of
models exposed as Web services poses
unique challenges at scale.

Since the Machine Learning Studio
launch in 2015, the team has been gath-
ering feedback from users large and
small. They’ve taken that feedback and
created something quite unique with
Machine Learning Workbench—a tool
that satisfies the needs of ML profes-
sionals of all levels.

Create Machine
Learning Accounts
Machine Learning Workbench requires
the provisioning of Machine Learning
accounts in Azure. Go to the Azure
Portal (portal.azure.com) and click the
New button in the upper-left corner.
In the textbox that appears type
“Machine Learning Experimentation”
and click on the first result. On the fol-
lowing blade, click on the Create button
at the bottom of the screen.

Next, a blade appears that asks for
some information used to create the
service. You may choose any name that
meets the validation requirements. Please
refer to Figure 1 to see the values I chose.
Currently, this service is only available
in three geographies. As I’m located on
the East Coast of the United States, I
selected East US2. Ensure that the check-
box next to Create model management
account is checked. Next, choose a pric-
ing tier. For the purposes of this article,
the free DevTest tier will suffice. Click on

Exploring the Azure Machine Learning
Workbench

Artificially Intelligent FRANK LA VIGNE

Figure 1 Options Selected to Create a Machine
Learning Experimentation Service

In September
2017, Microsoft

announced a new
suite of tools for
doing machine

learning on Azure.
The cornerstone

of these new
tools is Azure

Machine Learning
Workbench.

1217msdn_LaVigneAI_v3_18-23.indd 18 11/7/17 12:23 PM

http://portal.azure.com

(888) 850-9911
Sales Hotline - US & Canada:

/update/2017/12

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2017 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
2 New Century Place
East Street
Reading, Berkshire
RG1 4ET
United Kingdom

Asia / Pacific Headquarters
ComponentSource
7F Kojimachi Ichihara Bldg
1-1-8 Hirakawa-cho
Chiyoda-ku
Tokyo, 102-0093
Japan www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Help & Manual Professional from $586.04
Help and documentation for .NET and mobile applications.

• Powerful features in an easy, accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to responsive HTML, CHM, PDF, MS Word, ePUB, Kindle or print

• Styles and Templates give you full design control

BEST SELLER

Experience the brand new look at www.componentsource.com

DevExpress DXperience 17.1 from $1,439.99
The complete range of DevExpress .NET controls and libraries for all major Microsoft platforms.

• WinForms - New TreeMap control, Chart series types and Unbound Data Source

• WPF - New Wizard control and Data Grid scrollbar annotations

• ASP.NET - New Vertical Grid control, additional Themes, Rich Editor Spell Checking and more

• Windows 10 Apps - New Hamburger Sub Menus, Splash Screen and Context Toolbar controls

• CodeRush - New debug visualizer expression map and code analysis diagnostics

BEST SELLER

LEADTOOLS Medical Imaging SDKs V19 from $4,995.00 SRP

Powerful DICOM, PACS, and HL7 functionality.

• Load, save, edit, annotate & display DICOM Data Sets with support for the latest speci� cations

• High-level PACS Client and Server components and frameworks

• OEM-ready HTML5 Zero-footprint Viewer and DICOM Storage Server apps with source code

• Medical-speci� c image processing functions for enhancing 16-bit grayscale images

• Native libraries for .NET, C/C++, HTML5, JavaScript, WinRT, iOS, OS X, Android, Linux, & more

BEST SELLER

SpreadJS from $984.02
Deliver intuitive, e� cient, multi-functional, pure JavaScript spreadsheets for Enterprise apps.

• Harness the power of a spreadsheet to display and manage data like Microsoft Excel

• Go beyond the grid with cards, trellis, calendar, Gantt, news feed, timeline and more

• Renders to the HTML canvas for a fast, interactive user experience across all browsers

• Modularized - so you only need to load the JavaScript that contains the features you need

• A Client-side component - works with Windows, Linux, MacOS, Android and iOS

BEST SELLER

Untitled-1 1 11/6/17 12:36 PM

http://www.componentsource.com

msdn magazine20 Artificially Intelligent

the DevTest tier and click Select. Last, click on the Create Button.
While the cloud services initialize, it’s a good time to set up your

local computer.

Installing Machine Learning Workbench
While Machine Learning Workbench is available on Mac and
Windows, this article follows the path for a Windows install. For
further details and system requirement to install on a Mac, please
refer to Microsoft’s documentation on the topic at bit.ly/2zYrA7X.

If you haven’t already installed Docker on your system, now
would be a good time to do so. While this article will not make
use of it, future articles on Machine Learning Workbench will.
Machine Learning Workbench uses Docker to run code locally
in different frameworks. Some projects have Python and PySpark
containers available by default, while others just have Python con-
tainers. Available container configurations can be managed by
configuration files.

Machine Learning Workbench for Windows can be downloaded
from aka.ms/azureml-wb-msi. Once the installer downloads, run it and
follow the directions to install the tool. When the install is complete,

launch the program. Enter the same account credentials used to cre-
ate the Machine Learning Experimentation Service in Azure. After a
moment, the screen updates to show the Get Started window. Note
in the Projects area to the left that the name of the workspace should
match the value entered previously into Azure. Also take note that
in the bottom left-hand corner of the screen, a teal button appears
with the initials of the active account. Click on that button to reveal
a fly-out menu where you can see the current account and sign out.

Creating and Running a Project
To create a new project, either choose New Project from the File
menu or click the plus sign in the Projects pane. In the following
dialog box, shown in Figure 2, enter SimpleLinearRegression
as the project name, choose a directory for the project files, and
select Simple Linear Regression from the available project tem-
plates. Project templates are a great resource for learning how to
create an ML project based on various types of models and exter-
nal libraries. Click the Create button to create the project.

Once the project is created, the project dashboard opens. Each
project in Machine Learning Workbench opens to its project
dashboard. The dashboard contains instructions and information
about the project and functions very much like a readme.md file in
a GitHub repository. In fact, the contents of the dashboard file are
located in the readme.md file in the root directory of the project.

Choose Open Command Prompt from the File menu. In the
command prompt type:

conda install matplotlib

Follow the instructions on screen if prompted to install matplot-
lib, a graphing library for Python. Once the install completes, close
the command prompt window to return to the Machine Learning
Workbench. Take note of the Run button and the controls to its left.
Make sure that local and linar_reg.py are selected in the two drop-
downs and the Arguments text box is empty. Click Run.

Immediately after clicking Run, a Jobs pane appears with one
entry in the list. After a few moments, the job will complete.

Exploring the Interface - Jobs
To the left of the screen, there’s a vertical toolbar, click on the fourth
icon from the top, which resembles a clock with a counterclock-
wise arrow around it. In this case, the linear_reg.py file failed to run
twice before executing successfully, as seen in Figure 3. Note that
Machine Learning Workbench tracks the jobs executed through
it. At the bottom of the window under the STATUS header, click
the word Completed to view the properties of the run.Figure 2 Create New Project Dialog

Project templates are a great
resource for learning how to

create an ML project based on
various types of models and

external libraries.

1217msdn_LaVigneAI_v3_18-23.indd 20 11/7/17 12:23 PM

www.bit.ly/2zYrA7X
http://www.aka.ms/azureml-wb-msi

Untitled-16 1 8/9/17 4:28 PM

www.jetbrains.com/rider

msdn magazine22 Artificially Intelligent

Take some time to explore the various portions of this screen: Run
properties, Outputs, Visualization and Logs. Run properties displays
data about the properties of this particular run. If the Python script cre-
ates output files and places them in an outputs subfolder, they’ll appear
in the list under the Outputs section. In this run, there’s one file: lin.png.

Further down the screen is the Visualization section, which dis-
plays any images created by the Python script. For this script, there’s
one that plots the linear regression from the data files included in
the project. This is the same file shown in the Outputs section: lin.
png. Last, the Logs section lists all the logs associated with this run.

Exploring the Interface - Files
So far, I’ve run a Python script to perform a linear regression and
produce an output visualization, but I haven’t shown off any code.

Let’s take a look at the code behind the job that was just run. On
the toolbar on the left-hand side of the screen click on the folder
icon immediately below the Jobs icon. In the panel that appears,
there’s a list of files associated with this project: three directories
and five files. Click on the linear_reg.py to view the contents of the
script that was run earlier.

For readers unfamiliar with Python, the code first imports vari-
ous libraries to do advanced mathematics with arrays (NumPy) and
plot graphs (matplotlib). Next, the code loads the data from a local
file, data.csv, into an array. Then the code converts the array into an
nparray, which enables NumPy to perform matrix multiplication.
After some calculations, the code computes a linear regression for-
mula that approximates the data and prints out its findings. In lines
35 through 39, the code uses matplotlib to render a graph of the data

and plot a line representing the
linear regression. The rest of the
code prints out information per-
taining to the error and accuracy
of the linear regression model.

Once you’ve had a chance to
explore the script file, click on the
data.csv file to view the data file. Note
that the file immediately loads and
displays a .csv file with two num-
bers per row separated by a comma.

Data Munging
Tools Built In
The second icon from the top on
the toolbar brings up the data pane.
Clicking on it reveals a tree control
with two empty nodes. The linear_
reg.py file managed the data on its
own and didn’t make use of the
Machine Learning Workbench
advanced data munging tools. Now
would be a good time to explore
creating a data source through Ma-
chine Learning Workbench. Click
on the plus sign in the data pane
and click on Add New Data Source.

In the following dialog box, click
on the box labelled File(s)/Directory
and then click Next. Browse to the
data.csv file in the project direc-
tory and click Open. Click Next
once more. Note that Workbench
has already detected that this is a
comma-separated file. Leave all
the settings as is and click Next.
In this Data Types step, notice that
Machine Learning Workbench
automatically detected the formats
of each data field. Click Next to
view the Sampling step.Figure 4 The Resulting Data Set

Figure 3 The Jobs Run History

1217msdn_LaVigneAI_v3_18-23.indd 22 11/7/17 12:23 PM

msdnmagazine.com

msdn.microsoft.com/flashnewsletter

Sign up to receive MSDN FLASH,
which delivers the latest resources,
SDKs, downloads, partner offers,

security news, and updates
on national and local

developer events.

Get news
from MSDN

in your inbox!

magazine

For this small data set, there’s no need to change anything. For
larger data sets, this screen allows you to craft a custom strategy to
load data selectively. This way, when dealing with a multi-petabyte
data set, you can selectively deal with a small portion of the data to
define rules on how to transform the data. Click Next and leave the
default selection to not include the path column in the final data
set. Click Finish. The screen should look like Figure 4.

Note that the pane on the right side displays the steps just taken in
a list. Clicking on any one of the items will reveal an option to edit
the action. In more advanced scenarios, with more steps taken to
munge the data, this feature allows for changing and editing the steps.

At the top of the screen, there are two toolbar buttons: Metrics
and Prepare. Click on Metrics. In a few seconds, Machine Learning
Workbench automatically generates a series of data visualizations
for each column. When working with a new data set, it can be help-
ful to gather some basic information about each field. The metrics
view creates histograms and basic descriptive statistics about every
field in the data set. You can customize which metrics are displayed
by clicking on the Choose Metric dropdown list. By default, all
metrics are selected. Click on the newly visible Data toolbar but-
ton to return to the previous screen.

Now, click on the Prepare button. In the Prepare dialog, leave
the top dropdown list at its default of New Data Preparation Pack-
age and enter SimpleDataPrep into the Data Preparation Package
Name. Click OK. Now the Data pane has two entries

Right-click on the SimpleDataPrep entry and click Generate
Data Access Code File. The newly created file opens, displaying
stub code that loads a referenced package and returns a Pandas
DataFrame. In a PySpark environment, this call returns a Spark
DataFrame. DataFrames are a common data structure in Python.
Using the DataFrame creation code generated by Machine Learning
Workbench can save a great deal of time.

Wrapping Up
I was skeptical that Machine Learning Studio could be improved
upon at first. However, the more I use Machine Learning Workbench,
the more impressed I am with it. It not only provides mechanisms
to import data, it also auto-generates a package that can clean data
and expose it as a DataFrame, a common data format for Python.
By importing data this way, data scientists can save a great deal of
time. Furthermore, you saw that using the data import tool was not
a difficult requirement. Machine Learning Workbench also allows
for the use of any Python library, such as matplotlib.

This article barely scratches the surface of what Machine Learning
Workbench is capable of. In future articles, I’ll explore this great
tool even more. For instance, configuring Machine Learning
Workbench to work with virtual machines in Azure for fast pro-
cessing, transforming data “by example,” and working with Jupyter
Notebookz inside Machine Learning Workbench.	 n

Frank La Vigne leads the Data & Analytics practice at Wintellect and co-hosts the
DataDriven podcast. He blogs regularly at FranksWorld.com and you can watch
him on his YouTube channel, “Frank’s World TV” (FranksWorld.TV).

Thanks to the following technical experts for reviewing this article: Andy Leonard
(EnterpriseDNA), Hai Ning (Microsoft), Jonathan Wood (Wintellect)

1217msdn_LaVigneAI_v3_18-23.indd 23 11/7/17 12:23 PM

http://msdn.microsoft.com/flashnewsletter
http://www.msdnmagazine.com
www.FranksWorld.TV

msdn magazine24

By now you’ve most likely heard of Docker, Docker
containers and, with the introduction of Windows Server 2016,
integrated Windows Server Containers. I truly believe that
within a few years Docker containers will become the standard
for how Web sites, applications and other systems run, as opposed
to relying on running virtual machines (VMs) to support appli­
cations. Using Docker has enabled scalability, isolation, and
security while also ensuring that applications and systems are con­
figured properly with little support from a deployment standpoint.
Compared to the complexity of setting up a VM and configur­
ing all the required features, the simplicity of the Docker setup is
very beneficial. Just as physical machine requests were gradually

phased out in favor of VMs, it’s more likely than not that Docker
will begin to replace the need for VMs in the next few years—if
not sooner.

In this article I’ll focus on how I leveraged a container approach,
using Windows Server 2016, file sharing and socket communica­
tions with Windows Server Containers, to modernize several .NET
applications. I’ll provide details on how I used Windows PowerShell
to create a Docker image and share files and sockets between a host
Windows Server 2016 system and a Windows Server Container. It’s
likely that many of your applications have common functionality
such as this that you’d need to enable to ensure your .NET appli­
cation can be ported to a Docker container. Many of the features
I review aren’t Windows Server Container-specific and could be
leveraged for any applications that have similar functionality.

The Business Challenge: A CPU-,
Memory- and Disk-Intensive .NET App
My business challenge was to modernize several existing .NET and
C++ console applications responsible for handling large volumes
of data, which involved very heavy CPU-, memory- and disk-
intensive processing. I needed to expose these console applications
in a more traditional Web model where the system would migrate
from a single-user system to a multi-user supported setup. Given
how the applications were set up and the volume of data being
processed, I didn’t want to manage multiple copies of the data or
executables across VMs.

CO N TA INER S

Modernize a
.NET App with
Docker and Windows
Server Containers
Sean Iannuzzi

This article discusses:
•	Running a traditional .NET application in Docker

•	Leveraging file sharing between the host system and a
Docker container

•	Enabling socket communication between the host and the
Docker container

Technologies discussed:
Microsoft .NET Framework, Docker, Windows Containers,
Windows Server 2016

Code download available at:
msdn.com/magazine/1217magcode

1217msdn_IannuzziDocker_v3_24-31.indd 24 11/7/17 12:15 PM

http://msdn.com/magazine/1217magcode

25December 2017msdnmagazine.com

As part of this business challenge, I needed to determine how I
could best scale out these applications, as well as minimize network
latency and file management across the network. Performance of
the applications was critical, and any use of network sharing, file
sharing or other distributed processing would significantly impact
their performance. Therefore, in order for this business challenge
to be considered successful, I needed to provide a scalable model
that also yielded a high level of performance (with regard to CPU,
memory and disk IO), without having to maintain multiple copies
of my data. As with most projects, the timeline to deliver a newly
modernized and scalable version of these applications was very
limited, eliminating the possibility of a complete redesign.

Important Features: File Sharing,
Socket Connections and .NET in Docker
For my particular applications, I considered several options prior
to landing on using Docker and, more specifically, on Windows
Server Containers. As part of my evaluation, I had three very
specific technical challenges to prove out in order to migrate the
applications successfully to Docker:

• �Running a traditional .NET app in Docker.
• �Leveraging file sharing between the host system and my

Docker container.
• �Enabling socket communication between the host and the

Docker container.
I’ll show you in detail how to overcome these technical challenges

and how to implement the concepts with Docker and Windows
Server Containers running on Windows Server 2016. The concepts
themselves are just the beginning when considering how many of
your .NET applications could potentially be migrated to Docker
or Windows Server Containers. The examples I’ll review can be
applied or expanded more broadly to address various application
features, which in turn can provide your applications with a more
modernized deployment.

Application Performance:
8GB RAM, 10TB of File Processing
Before I dive too deeply into the options and concepts I consid­
ered, I want to provide a little more detail on the applications and
systems that I moved to Docker containers. First and foremost, the
applications are rather unique in the type of work they perform,
and they’re very process-, memory- and disk-intensive. More­
over, the speed at which the applications perform is critical to the
success of the system.

My applications, primarily designed for a single user, perform
very complex calculations processing data files and were built with
a combination of C++ and the .NET Framework. To give you an
idea of the performance challenges of my system, it takes approx­
imately 8GB of RAM per user to perform calculations on data
files that are upward of 10TB in size, and requires pre-allocated
memory and extremely fast disk speeds to process the large vol­
umes of data in seconds. The system also uses socket connections
for invocation and notification from the requestor. As the appli­
cations and systems evolved, I found I needed a quick way to scale
the system and support multi-user processing. I expect many of

you can think of similar applications that might benefit by being
moved into a container.

Solution Options: Reengineer, Auto-Scale, Docker
The technical challenges I faced involved evaluating the different
ways I might achieve my goals. I considered three options.

1. Reengineering: One option was to reengineer the entire
application suite. This would surely work, but given the size and
complexity of my system, I needed a solution that would introduce
less risk and not take as long to complete. Waiting a year or even a
several months to redesign the system was not going to be accept­
able. However, it was still important to evaluate this option in the
event it might turn out to be a reasonable solution.

2. Auto-Scaling: Another option was to evaluate how I could
leverage VMs and auto-scaling. This would definitely be quicker
than rewriting the application and would lessen the risk overall.
However, it would add a lot of overhead because of the time it
would take to allocate a VM, especially a VM with 10TB of storage.
Even though I could find solutions for this, such as using standby
instances and then handling the provisioning and de-provisioning of
the servers via an additional layer or application, it still didn’t seem
like the best approach. However, this option was definitely moving
me in the right direction because it didn’t involve reengineering
the entire application and could deploy multiple executables per
VM and scale out the VMs automatically. I decided to continue my
search for a simpler implementation model using a more modern
technological approach.

3. Docker Container: The last option I considered was to
use Docker, with interoperability between the host system and
the Docker containers. Using Docker containers would allow me
to scale the system as needed without having to reengineer the
entire system. This approach would lessen the risks involved with
reengineering the application, provide a level of isolation for secu­
rity purposes, and allow me to implement these updates quickly
while still providing the level of scale I needed.

Deploying .NET Apps with Docker
The main issues I had with the Docker option was that the appli­
cation was written in .NET and C++ and I had concerns that my
application wouldn’t be able to be run in Docker directly. As soon as
I began researching how to migrate my .NET/C++ apps to Docker,
I learned that it would require an upgrade or redesign. Keeping
in mind that my approach had to be quick, I began to learn more
about Windows Server 2016 and the fully integrated Windows
Server Containers. By leveraging Windows Server Containers,
I was hoping I could leave the application as is and deploy all
dependencies along with the other required setup in my container.
The initial technical challenge I encountered was that traditional
Docker containers for .NET apps require .NET Core, while my
application was written with .NET and C++. Of course, I could’ve
upgraded the application to .NET Core, but this would’ve involved
a significant effort and I was trying to deploy a solution that was
as quick as possible with the least amount of risk. I was also trying
to ensure that I included the ability to scale, along with a level of
isolation and security to my application, as well.

1217msdn_IannuzziDocker_v3_24-31.indd 25 11/7/17 12:15 PM

http://www.msdnmagazine.com

msdn magazine26 Containers

 Although the use of Windows Server Containers was beginning
to look very promising, I still needed to test a number of differ­
ent concepts—such as file sharing and socket connections—that
you might also find very useful. While much of what I describe is
unique to my particular setup, the options and concepts are not and
can be leveraged for other systems that need this type of migration
or scale without having to redesign or rewrite the application. Of
course, this approach doesn’t replace an application redesign, but
does offer time for a team to redesign the application if that’s the
desired direction. As part of that redesign, the team can reengineer
the application that’s Docker-compatible or -enabled.

In the next few sections I’ll describe:
1. �How I set up the Windows Server 2016 VM to support

Windows Server Containers.
2. �How I created my Docker image using PowerShell.
3. �The Docker file based on Windows Server Core.
4. �How to enable advanced file sharing between the host and

the container.
5. �How to enable a socket listener from the host and the container.

Windows Server 2016
and Containers
To get started I deployed a
Windows Server 2016 VM and
enabled the appropriate features,
such as .NET Framework, IIS and
containers, as shown in Figure 1.

Please note that in order to build
this type of solution you must have
the .NET Framework installed.

After installing all of the
required features, I validated each
of them accordingly. To make sure
Docker was running properly I ran
the PowerShell command docker
–version. I then verified that the
Windows Docker Engine Service
was also running by typing
“(get-service “Docker”).Status”
from PowerShell. As a final step, I
performed a docker pull request for
the Windows Server Core Docker

image from dockr.ly/2i7pDSn. After the pull request completed I ver­
ified that the Docker image was created successfully by running
the command docker images.

Once I installed the Windows Container Services and set up
the environment with my base Docker image, I was ready to
begin working with my .NET console application.

.NET App Setup
I started with a very basic console application using the .NET
Framework 4.6.1. The application really didn’t do much other than
take an argument and display a response. Before going too far with
the full migration to a Windows container, I wanted to make sure
that the required functionality was going to work as intended.
However, there were a number of steps I needed to take before I
could run the application in a container on Windows Server 2016.

The first step was to create a reusable “build” PowerShell script
that would build the application and create a Docker image on
Windows Server 2016. To accomplish this task I wrote two func­
tions, one to perform the msbuild and another to create the actual
Docker image, as shown in Figure 2.

The next step in the script was to execute these two functions,
passing in all required parameters:

docker build -t myconsoleapplication .
Sending build context to Docker daemon 6.058MB
Step 1/3 : FROM microsoft/windowsservercore
 ---> 2cddde20d95d
Step 2/3 : ADD publish/ /
 ---> 452c4b42caa5
Removing intermediate container cafb387a3634
Step 3/3 : ENTRYPOINT myconsoleapplication.exe
 ---> Running in a128ff044ef3
 ---> 4c7dce888b36
Removing intermediate container a128ff044ef3
Successfully built 4c7dce888b36
Successfully tagged myconsoleapplication:latest

Figure 3 Output of the Build Script

Figure 1 Enabling the .NET Framework and Container Services

Set-StrictMode -Version Latest
$ErrorActionPreference="Stop"
$ProgressPreference="SilentlyContinue"
s
Docker image name for the application
$ImageName="myconsoleapplication"

function Invoke-MSBuild ([string]$MSBuildPath, [string]$MSBuildParameters) {
 Invoke-Expression "$MSBuildPath $MSBuildParameters"
}

function Invoke-Docker-Build ([string]$ImageName, [string]$ImagePath,
 [string]$DockerBuildArgs = "") {
 echo "docker build -t $ImageName $ImagePath $DockerBuildArgs"
 Invoke-Expression "docker build -t $ImageName $ImagePath $DockerBuildArgs"
}

Figure 2 PowerShell Functions to Build the Application and
Create a Docker Image

1217msdn_IannuzziDocker_v3_24-31.indd 26 11/7/17 12:15 PM

http://dockr.ly/2i7pDSn

Untitled-6 1 11/6/17 1:22 PM

www.docuvieware.com

msdn magazine28 Containers

Invoke-MSBuild -MSBuildPath "MSBuild.exe" -MSBuildParameters
 ".\myconsoleapplication.csproj /p:OutputPath=.\publish
/p:Configuration=Release"
Invoke-Docker-Build -ImageName $ImageName -ImagePath "."

With the build script in hand, all that remained was to create
my Docker file and my console application would be enabled for
Windows Server Containers running on Windows Server 2016. Note
that from a development standpoint, it can be helpful when testing
the build process to use the Visual Studio command prompt, which
will include MSBuild in your path. As part of the preliminary set­
up I installed a base Docker image named Windows Server Core
that had all of the base features I needed to run my application.
When creating the Docker file, I told Docker to use this image and
publish my application with the name “myconsoleapplication.exe”
as the entry point:

FROM microsoft/windowsservercore
ADD publish/ /
ENTRYPOINT myconsoleapplication.exe

The entry point will be the Main function in the console application.

Final Build and Deployment to Windows Server 2016
Once I had a complete .NET console application that was enabled
for Windows Server Containers, I was ready to deploy my applica­
tion. An easy way I found to do this for testing was to simply copy
the application folder to the VM. Once I copied the application to
the server, I executed the PowerShell script to build the applica­
tion. I navigated to the source directory and then ran the ./build
command from PowerShell.

The output of the build script should look similar to the result
shown in Figure 3.

To confirm that my Docker image was created successfully, I
ran the docker images command again and I could see the new
Docker Image, as shown in Figure 4.

Testing the Windows Server Container Console App
The very last step I took before getting into some very specific
features was to test my application to make sure that it would, in
fact, run within a Windows Server Container. To do so I ran the
following command:

docker run --rm -it myconsoleapplication
 ".NET Framework App Running in Windows Container"

As expected, the application output the argument passed to it
in the console window.

That took care of the basics for
deploying, configuring and set­
ting up a .NET app that can run in
a Windows Server Container. At
this point, you might be thinking of

many existing applications you could potentially move to a Windows
Server Container. However, there are still a few key features I found
very helpful—such as file sharing and socket communication—that
you might also find useful. In the next section I’ll delve a little more
into these features and how to leverage them in your own applications.

Docker Container: Enabling Advanced File Features
Like many console applications, yours may have a fair number of
files that are being leveraged for different reasons; whether it’s for
logging or processing or something else, the use of files might be
intensive. For my particular set of applications, I was reading in
very large files and didn’t want to copy the files to every container. I
also wanted to do my best to optimize disk I/O, and using a shared
folder on the network—a file server—introduced too much latency
and impacted performance when trying to read in such large files.
Furthermore, I didn’t want to create multiple versions of my appli­
cation with various configurations, ports and directories as this
would be a maintenance nightmare. As a result, I started evaluating
how I could share my files on my host system running the Docker
service and then access those files from within my container. What
I found is that this is extremely easy and it doesn’t matter if you’re
using Windows Server Containers or running a Docker container
in Linux. Docker has full support for this type of functionality. In
fact, what was the most beneficial to my setup was that as long as
I mounted a drive in the container to correlate with the internal
directories, I didn’t even need to modify my application. The only
change I made was to have a parameter set my path when I ran the
Docker container instead of reading it from a configuration file.

I was able to keep all of the file processing and paths intact
because they were all relative paths and within a main directory.
That meant I didn’t have to change the core logic of my application,
which in turn alleviated much of the risk I might have engendered
by changing my .NET console application.

To test this functionality, I added a basic file IO process to my
console application by inserting the following code:

using (StreamWriter sw = File.AppendText(@"C:\containertmp\testfile.txt"))
{
 sw.WriteLine(DateTime.Now.ToString() + " - " + args[0]);
}

Figure 4 Console Application As a Docker Image

For my particular set of
applications, I was reading in

very large files and didn’t want to
copy the files to every container.

Figure 5 Host and Windows Server Container File
Operations Overview

Windows Sever 2016 – Virtual Machine

Host Folder

File Access

Windows Server Container

Console
Application

File Operations

1217msdn_IannuzziDocker_v3_24-31.indd 28 11/7/17 12:15 PM

Americas: +1 903 306 1676
EMEA: +44 141 628 8900
Oceania: +61 2 8006 6987
sales@asposeptyltd.com

Manipulating Documents?
Document Manipulation APIs

Untitled-1 1 11/6/17 12:31 PM

https://downloads.groupdocs.com/
mailto:sales@asposeptyltd.com

msdn magazine30 Containers

I then redeployed my solution to the Windows Server 2016 VM.
This also required rebuilding the image by running the ./build
PowerShell script.

The last step to enable this functionality was to create a directory on
the host that I needed to expose to the Docker container. In my case,
I just created a folder called hostcontainershare. The key to doing this
was how I mounted this folder from the Windows Server Host System
to the Docker container. Surprisingly, this is extremely easy to accom­
plish by passing in the following argument to the docker run command:

-v [source directory or path]:[container directory or path]

This argument is set up to accept a source and target. For
example, I passed in first my local Windows Server Host directory
and then how I wanted it mounted inside the container. Here’s the
entire docker run command:

docker run --rm -it -v c:\hostcontainershare:c:\containertmp myconsoleapplication
 ".NET Framework App Writing to Host Folder" 1

There are various ways to accomplish this functionality both in
Windows Server Containers and Docker containers, but for my .NET
console application, I found this method very simple and easy to
implement. An illustration of how this is set up is shown in Figure 5.

The result of the docker run command was a file written to my host
directory from within my Docker container, as shown in Figure 6.

Enabling this functionality provided significant advantages for
my application because of what it’s doing with very large files. I
found I didn’t need to duplicate my files across all of the containers.
As long as I have optimal or solid state drives on my host, the file
processing is much faster than using a shared folder, network drive

or other non-local site. The benefits of using this technique are
countless for traditional console applications.

With successful file sharing, I had one last feature to conquer—
socket connections, which I’ll discuss in the next section.

Docker Container:
Enabling Advanced Socket Features
One of the main features I needed to prove out was being able to
communicate from a host socket connection to an internal container
socket connection. Again, much of this functionality can be leveraged
in both Windows Server Containers and Docker containers because
the setup is controlled via command-line arguments that specify how
the Docker container is running and what ports are being exposed.

To support this functionality, I created client and server socket
applications that would establish a connection from the client
application running on Windows Server to a server-side applica­
tion listener running as a Windows Server Container. I also added
into my application the code necessary to listen on a specific socket
and then respond in the console with the data and bytes received.

I leveraged Microsoft’s socket examples from Asynchronous
Client Socket Example at bit.ly/2gDKYz2 and Asynchronous Server
Socket Example at bit.ly/2i8VUbK for the base code segments I inte­
grated into my application.

I did make a few changes to the server-side code to assist with
getting the IP address of the container so that when I was using
the client socket application I’d be able to provide the assigned IP
address. I was able to obtain the NAT details of the container by
running the following command:

docker network inspect nat

I also ran various lookups to retrieve the IP address of the con­
tainer, but to make it easy to debug and troubleshoot I added in
a loop that retrieved all of the IP addresses and then wrote them
out to the console window:

Figure 6 Example of Write Access from the Docker Container to the Windows Server 2016 Host

Figure 7 Client to Windows Server Container Host Socket
Communication

Socket Connection

Windows Sever 2016 – Virtual Machine

Port Configuration

Windows Server Container

Console
Application

Socket Listener
Client Console

Application

With successful file sharing, I had
one last feature to conquer—

socket connections.

1217msdn_IannuzziDocker_v3_24-31.indd 30 11/7/17 12:15 PM

www.bit.ly/2gDKYz2
www.bit.ly/2i8VUbK

31December 2017msdnmagazine.com

foreach (var info in ipHostInfo.AddressList)
{
 Console.WriteLine("\nIP: " + info);
}

I also set the port to the specific port I was testing for my
socket connection. I once again deployed my application to the
Windows Server 2016 VM, as well as copied my client application
to the server in order to test the connectivity. By default, no custom
ports are exposed from the container and the container won’t allow
a TCP socket connection. In order to enable this functionality I
needed to give Docker the appropriate run arguments, similar to
what was needed to share a folder.

In my case, I wanted to connect to port 50020 from the host run­
ning my client application to the .NET console application running
within my Windows Server Container. Figure 7 illustrates how the
application is set up.

Once everything was set up and configured, I needed to tell
the Windows Server Container and Docker container that I want
to expose certain ports from my container to the host machine.
To enable this behavior I specified the following argument to the
Docker run command:

-p [host port]:[container port]

You can expose multiple ports by repeating this argument for
each one, for example -p 50020: 50020 –p 50019:50019, and so
forth. By running my container and exposing the ports I was ready
to test that I have a connection from the Windows Server Con­
tainer console application to my client running on the Windows
Server 2016 VM.

The complete command I used to run the Windows Server
Container was:

docker run --rm -it -p 50010:50010 -v c:\hostcontainershare:c:\
containertmp myconsoleapplication
 ".NET Framework App Listening on Socket" 2

Once I launched the Windows Server Container running the
console application, I was ready to start my client application. The
container console application showed me the current IP address
of the container and the fact that it was listening on the socket I
specified. All I needed to do next was launch my client applica­
tion and pass in the current IP address of the container I wanted
the client application to connect to and my testing would be com­
plete. As shown in Figure 8, the client application connected to
the IP address of the container console application displayed on
the screen and sent a small set of data over the socket. Success!

Wrapping Up
Given the nature of the applications I was running, I needed several
specific features to be available with Docker. When I learned that
Windows Server Containers would let me run my .NET console
application, I was fairly optimistic that I’d be able to access a file from
the host and enable socket communication from the host system to
my Docker container. What I was most impressed with is the ability to
share folders and files while also exposing sockets and ports specific to
my applications or any other applications. With Windows Server 2016,
the integration of Windows Server Containers is extremely smooth,
with very little configuration or orchestration required to deploy
Windows containers. For .NET app you’re planning to migrate to
Docker, I definitely recommend using Windows Server Containers
and exposing features of Docker as needed to ensure you applica­
tion will run as expected. As with most applications and sharing of
resources, security must always be considered and reviewed. You still
must use caution when sharing data or sockets from a host system to a
container. When enabling such functionality, you need to be extremely
careful not to introduce a vulnerability. In addition, sharing files and
opening ports between a host system and a container must be handled
with care to avoid security risks. I found that with my application, I
was able to provide a high-level of scalability while also modernizing
certain components of the application overall. The application can
now be deployed into a more scalable setup using Docker Swarm or
other scaling models that allow the application to run, limited only by
cost or by the level of the hardware. As a bonus, this solution provided
me with the much-needed time to evaluate if a redesign was needed
or if this solution could be the permanent solution. With many of
the features shown in this article, hopefully you can begin your own
migration and design to modernize your .NET applications.	 n

Sean Iannuzzi has been in the technology industry for more than 20 years and
has played a pivotal role in bridging the gap between technology and business
visions for a plethora of social networking, Big Data, database solutions, cloud
computing, e-commerce and financial applications of today. Iannuzzi has expe-
rience with more than 50 unique technology platforms, has achieved more than
a dozen technical awards/certifications and specializes in driving technology
direction and solutions to help achieve business objectives.

Thanks to the following Microsoft technical expert for reviewing this article:
Jesse Squire

Figure 8 Client Socket Application Sending Data to Container Console Application

1217msdn_IannuzziDocker_v3_24-31.indd 31 11/7/17 12:15 PM

http://www.msdnmagazine.com

Boston

Austin

Las Vegas

VISUAL STUDIO LIVE! (VSLive!™) is celebrating 25 years as one of the most respected,
longest-standing, independent developer conferences, and we want you to be a part of it.

Join us in 2018 for #VSLive25, as we highlight how far technology has come in 25 years,
while looking toward the future with our unique brand of training on .NET, the Microsoft
Platform and open source technologies in seven great cities across the US.

SUPPORTED BY

magazine

PRODUCED BY

March 12 – 16, 2018
Bally’s Hotel & Casino

April 30 – May 4, 2018
Hyatt Regency Austin

June 10 – 14, 2018
Hyatt Regency Cambridge

Respect the Past.
Code the Future.

Code Like It’s 2018!

Developing Perspective.

Untitled-7 2 10/11/17 1:47 PM

www.vslive.com

Redmond

Orlando

San Diego

Chicago

CONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

vslive.com

#VSLIVE25

August 13 – 17, 2018
Microsoft Headquarters

September 17 – 20, 2018
Renaissance Chicago

Look Back to
Code Forward.

October 8 – 11, 2018
Hilton San Diego Resort

Code Again for
the First Time!

December 2 – 7, 2018
Loews Royal Pacific Resort

Code Odyssey.

2018 DATES ANNOUNCED

Yesterday’s Knowledge;
Tomorrow’s Code!

NEW LOCATION!

Untitled-7 3 10/11/17 1:48 PM

www.vslive.com
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine34

The Windows XAML team released the NavigationView
control with the Windows 10 Fall Creators Update. Prior to the
control, developers tasked with implementing a hamburger menu
were limited to the rudimentary features of the SplitView control.
The resulting interfaces were inconsistent in both visual presen-
tation and behavior. Even first-party Microsoft apps like Groove,
Xbox, News and Mail struggled with visual alignment across the
portfolio. Often an internal problem drives an external solution,
as is the case here with NavigationView.

The control gives XAML developers a fresh and beautiful visual,
consistently implemented across devices with comprehensive
support for adaptive scaling, localization, accessibility, and sig-
nature Windows experiences like Microsoft’s new Fluent design
system. The control is beautiful, and end users are bound to lose
endless hours of productivity just invoking the control’s selec-
tion animation over and over. It’s mesmerizing. Figure 1 shows
NavigationView basic styling.

The Basics
Adding the NavigationView to an app is simple. Generally, Navi-
gationView is in a dedicated page, like ShellPage.xaml. Just a few
lines of XAML give a menu, buttons and handlers to respond to
typical user actions. See the NavigationViewItem in MenuItems
in the following code:

<NavigationView SelectionChanged="SelectionChanged">
 <NavigationView.MenuItems>
 <NavigationViewItemHeader Content="Section A" />
 <NavigationViewItem Content="Item 01" />
 <NavigationViewItem Content="Item 02" />
 </NavigationView.MenuItems>
 <Frame x:Name="NavigationFrame" />
</NavigationView>

These are the primary navigation buttons. Other items supported
are the NavigationViewItemHeader and NavigationViewItem-
Separator, which, together, allow developers to compose beautiful
and sophisticated menus. There are several things you should be
thinking about as you work through the Navigation view.

Anatomy The parts of the NavigationView are as shown in
Figure 2. Each area builds out a comprehensive UX. The Header,
Pane Footer, Auto Suggest and Settings button are optional,
depending on your app’s design requirements.

Modes The control has three possible modes: Minimal, Compact
and Extended, as depicted in Figure 3. Each is auto-selected based
on a built-in and customizable view with thresholds. Modes allow
the NavigationView to remain usable and practical as the size of
the app or device changes.

Real-World Problems
The NavigationView is simple to understand, but not always easy
to implement, especially within the context of sophisticated, real-
world scenarios. Controls made accessible to every developer use
case often require some clear-headed coding. Here’s a rundown of
issues and elements developers need to recognize. I’ll be address-
ing each of these later in this article.

Data Binding Personally, I think it’s ridiculous to data bind
menu items to a top-level navigation control, but I realize not all
developers agree. To that end, binding to the NavigationView from
a codebehind is quite simple. Binding from a view-model requires
breaking cardinal rules like referencing UI namespaces.

Navigating Developers might be surprised the NavigationView
doesn’t navigate. It’s only a visual affordance for navigation. It doesn’t
have a Frame or understand what its menu items should do. The
first thing developers will need to solve is simple navigation with
some logic around reloading pages.

U N IV E RSAL WINDOWS PL ATF OR M

The New Navigation View
for UWP Apps
Jerry Nixon

This article discusses:
•	The basics of the NavigationView XAML control

•	Using NavigationView to build an app with real-world requirements

•	Control extensibility opportunities using standard techniques in
XAML and C#

Technologies discussed:
Universal Windows Platform, XAML, Windows 10 Fall Creators
Update, NavigationView control

Code download available at:
bit.ly/2AjgFVG

1217msdn_NixonXAML_v4_34-40.indd 34 11/8/17 8:56 AM

www.bit.ly/2AjgFVG

35December 2017msdnmagazine.com

Back Button Windows 10 provides a shell-drawn back button
that’s optional in some cases, but required in others, like tablet
mode. The back button saves canvas real estate and establishes
a unified point for back navigation. Attaching to the universal
WinRT BackRequested event is straight forward, but synchroniz-
ing NavigationView’s selection is another requirement.

Settings Button The NavigationView provides a default, local-
ized Settings button at the bottom of the menu pane. It’s brilliant.
The button establishes a single, standard point of invocation for a
common user action. It’s the sort of thing designers and develop-
ers should learn from and adopt quickly for the sake of a visually
aligned UX across the ecosystem.

Implementation of the Settings button is simple and clean, but
it’s another requirement of the NavigationView that’s not delivered
right out of the box. The problem lies in every XAML developer’s
desire to declare a control’s behavior, rather than code it.

Header Items The NavigationView’s MenuItem property accepts
NavigationViewItemHeader objects used to visually bookend but-
tons; it’s particularly useful to partition NavigationViewItems. But
opening and closing the NavigationView’s menu pane truncates the
content of a header. Developers need to be able to control menu
look and structure in both narrow and wide modes.

Real-World Solutions
XAML developers have several tools for solving problems. Inherit-
ing from a control lets developers extend its behavior (bit.ly/2gQ4vN4),

extension methods enhance the
base implementation of even
sealed controls (bit.ly/2ik1rfx) and
attached properties can broaden
the capabilities of a control
(bit.ly/2giDGAn), even supporting
declaration in XAML.

Data Binding Since 2006, when
the XAML team invented it, Model-
View-ViewModel (MVVM) has
been the darling pattern of XAML
developers, including Microsoft’s
own first-party apps. One principle
of the design pattern is to prevent
the reliance on and reference to UI
namespaces in view-models. There
are many reasons this is smart. As

shown in the following code snippet, NavigationView supports the
data binding of NavigationViewItems to the MenuItemsSource prop-
erty, similar to ListView.ItemsSource, but it precludes UI namespaces.
That’s fine in codebehind, but a problem to solve for view-models:

public IEnumerable<object> MenuItems
{
 get
 {
 return new[]
 {
 new NavigationViewItem { Content = "Home" },
 new NavigationViewItem { Content = "Reports" },
 new NavigationViewItem { Content = "Calendar" },
 };
 }
}

To side-step referencing Windows.UI.Xaml.Controls in my
view-model, I abstract the NavigationViewItem to a DTO. I repeat
this process for each potential peer object. Every item’s ordinal
position is the responsibility of the view-model and should be
maintained by the view logic. These abstractions are simple and
easy for the view-model to provide, as shown in this code:

public class NavItemEx
{
 public string Icon { get; set; }
 public string Text { get; set; }
}

public class NavItemHeaderEx
{
 public string Text { get; set; }
}

public class NavItemSeparatorEx { }

However, the NavigationView doesn’t know my custom
classes and they need to be converted to proper Naviga-
tionView controls for rendering. Binding to custom classes
requires significant custom code in the NavigationView
to coerce rendering, so we’ll avoid this. Note: I am inten-
tionally avoiding custom templates, so I don’t mistakenly
spoil accessibility or miss out on template improvements
in subsequent platform releases. To make conversion
easy, I introduce a value converter I can reference in my
XAML binding. Figure 4 shows the code responsible for
taking my enumerable of custom classes and returning
the objects that the NavigationView expects.Figure 2 NavigationView Parts

Figure 1 NavigationView Basic Style

1217msdn_NixonXAML_v4_34-40.indd 35 11/8/17 8:56 AM

http://www.msdnmagazine.com
www.bit.ly/2gQ4vN4
www.bit.ly/2giDGAn
www.bit.ly/2ik1rfx

Untitled-4 2 9/7/17 1:32 PM

www.textcontrol.com

Untitled-4 3 9/7/17 1:32 PM

www.textcontrol.com

msdn magazine38 Universal Windows Platform

After referencing this converter as an app-wide or page-level
resource, the syntax is as simple as any other converter. I want to
take a moment to reiterate how crazy I think it would be to data
bind a top-level navigation, but this extensible solution works
seamlessly, as shown here:

MenuItemsSource=”{x:Bind ViewModel.Items, Converter={StaticResource NavConverter}}”

Navigating Navigation in the Universal Windows Platform
(UWP) starts with the XAML Frame. But, the NavigationView
doesn’t have a Frame. In addition, there’s no way to declare my intent
with a menu button, which is to say, the page I want it to open. This
is easily solved with the XAML attached properties shown here:

public partial class NavProperties : DependencyObject
{
 public static Type GetPageType(NavigationViewItem obj)
 => (Type)obj.GetValue(PageTypeProperty);
 public static void SetPageType(NavigationViewItem obj, Type value)
 => obj.SetValue(PageTypeProperty, value);
 public static readonly DependencyProperty PageTypeProperty =
 DependencyProperty.RegisterAttached("PageType", typeof(Type),
 typeof(NavProperties), new PropertyMetadata(null));
}

Once I have PageType on NavigationViewItem, I can declare
the target page in XAML or bind it to my view-model. Note: I
could add additional Parameter and TransitionInfo properties if
my design required it; this sample focuses on a basic Navigation
implementation. Then I let the extended NavigationView handle
navigation, as shown in Figure 5.

Look at Figure 5 and you’ll notice four important enhancements.
One, a XAML Frame is injected during control instantiation. Two,
handlers have been added for Frame.Navigated, ItemInvoked and
BackRequested. Three, SelectedItem has been overridden to add
BackStack and BackButton logic. And four, a new SettingsPage-
Type property has been added to the class.

Back Button The new, explicit frame isn’t just a convenience, it
gives me the source for Navigation events. This is important. When
the NavigationView invokes navigation, I update the visibility of
the shell-drawn back button. Should the user navigate another way,
however, I can’t know to update the back button without some sort
of event. The Frame.Navigated event is an excellent, global choice.

Find An unexpected behavior of the Navigation-
View’s ItemInvoked event is that the InvokedItem
property passed in the custom event arguments is
the string content of the NavigationViewItem and
not an object reference to the item itself. As a result,
the Find methods in this customized control locate
the correct NavigationViewItem based on content
passed in ItemInvoked or PageType passed in the
Frame.Navigated event.

It’s worth noticing the content of Navigation-
ViewItem can change dynamically with localization
settings on the device. Handling ItemInvoked with
a hardcoded switch statement, as demonstrated in
the online documentation (bit.ly/2xQodCM) would work
for English-speakers only or require the switch to
exponentially expand as languages are added to sup-
port a UWP app. Try to avoid magic numbers and
magic strings anywhere in your code. They’re not
compatible with significant code bases.

Settings The settings button is the only button in the lower
menu pane that participates in the selection logic of the Navi
gationView. Invoking it, users navigate to the settings page. To
simplify that implementation, notice the custom SettingsPageType
property, which holds the desired target page type for settings.

public class INavConverter : IvalueConverter
{
 public object Convert(object v, Type t, object p, string l)
 {
 var list = new List<object>();
 foreach (var item in (v as Ienumerable<object>))
 {
 switch (item)
 {
 case NavItemEx dto:
 list.Add(ToItem(dto));
 break;
 case NavItemHeaderEx dto:
 list.Add(ToItem(dto));
 break;
 case NavItemSeparatorEx dto:
 list.Add(ToItem(dto));
 break;
 }
 }
 return list;
 }

 object IvalueConverter.ConvertBack(object v, Type t, object p, string l)
 throw new NotImplementedException();

 NavigationViewItem ToItem(NavItemEx item)
 new NavigationViewItem
 {
 Content = item.Text,
 Icon = ToFontIcon(item.Icon),
 };

 FontIcon ToFontIcon(string glyph)
 new FontIcon { Glyph = glyph, };

 NavigationViewItemHeader ToItem(NavItemHeaderEx item)
 new NavigationViewItemHeader { Content = item.Text, };

 NavigationViewItemSeparator ToItem(NavItemSeparatorEx item)
 new NavigationViewItemSeparator { };
}

Figure 4 Converter for NavItems

Figure 3 NavigationView Modes

1217msdn_NixonXAML_v4_34-40.indd 38 11/8/17 8:56 AM

www.bit.ly/2xQodCM

39December 2017msdnmagazine.com

The overridden SelectedItem setter tests for the settings button
and consequently navigates as declared.

What isn’t handled in either the NavigationViewItem’s PageType
property or the SettingsPageType property is a way to indicate cus-
tom TransitionInfo to the Frame’s Navigate method to coerce the
transition information during navigation. This can be an important

customization to any app, and additional custom or attached prop-
erties could be added to allow for this additional instruction. The
code to accomplish this looks like this:

<local:NavViewEx SettingsPageType="views:SettingsPage">
 <NavigationView.MenuItems>
 <NavigationViewItem Content="Item 01"
 local:NavProperties.PageType="views:Page01" />
 <NavigationViewItem Content="Item 02"
 local:NavProperties.PageType="views:Page02" />
 <NavigationViewItem Content="Item 03"
 local:NavProperties.PageType="views:Page03" />
 </NavigationView.MenuItems>
</local:NavViewEx>

This kind of extensibility allows developers to aggressively extend
the behavior of controls and classes without altering their fundamen-
tal, underlying implementations. It’s a capability of C# and XAML
that has been there for years and makes the coding syntax terse and
the XAML declaration plain. It’s an intuitive approach that translates
to other developers clearly with little instruction.

Start Page When an app loads, no menu item is initially invoked.
Adding another attached property, as shown below, lets me declare
my intent in XAML so the extended NavigationView can initialize
the first page in its Frame. Here’s the property:

public partial class NavProperties : DependencyObject
{
 public static bool GetIsStartPage(NavigationViewItem obj)
 => (bool)obj.GetValue(IsStartPageProperty);
 public static void SetIsStartPage(NavigationViewItem obj, bool value)
 => obj.SetValue(IsStartPageProperty, value);
 public static readonly DependencyProperty IsStartPageProperty =
 DependencyProperty.RegisterAttached("IsStartPage", typeof(bool),
 typeof(NavProperties), new PropertyMetadata(false));
}

Using this new property in the NavigationView is a matter of
locating the NavigationViewItem within MenuItems with the Start
property set, then navigating to it when the control has success-
fully loaded. This logic is optional, supporting the setting but not
requiring it, as shown here:

Loaded += (s, e) =>
{
 if (FindStart() is NavigationViewItem i && i != null)
 Navigate(_frame, i.GetValue(NavProperties.PageTypeProperty) as Type);
};

NavigationViewItem FindStart()
 => MenuItems.OfType<NavigationViewItem>()
 .SingleOrDefault(x => (bool)x.GetValue(NavProperties.IsStartPageProperty));

Notice the use of the LINQ SingleOrDefault selector in my
FindStart method, as opposed to its selector sibling, First. Where
FirstOrDefault returns the first found, SingleOrDefault throws an
exception should more than one be discovered by its predicate.
This helps guide and even enforce developer usage of the property,
because only one initial page should ever be declared.

Page Header As shown in Figure 2, the NavigationView Header
isn’t optional. This area above the Page, with a fixed height of 48px, is
intended for global content. Implementing a simple title is as easy as
the snippet here, which attached a Header property to the Page object:

public partial class NavProperties : DependencyObject
{
 public static string GetHeader(Page obj)
 => (string)obj.GetValue(HeaderProperty);
 public static void SetHeader(Page obj, string value)
 => obj.SetValue(HeaderProperty, value);
 public static readonly DependencyProperty HeaderProperty =
 DependencyProperty.RegisterAttached("Header", typeof(string),
 typeof(NavProperties), new PropertyMetadata(null));
}

public class NavViewEx : NavigationView
{
 Frame _frame;

 public Type SettingsPageType { get; set; }

 public NavViewEx()
 {
 Content = _frame = new Frame();
 _frame.Navigated += Frame_Navigated;
 ItemInvoked += NavViewEx_ItemInvoked;
 SystemNavigationManager.GetForCurrentView()
 .BackRequested += ShellPage_BackRequested;
 }

 private void NavViewEx_ItemInvoked(NavigationView sender,
 NavigationViewItemInvokedEventArgs args)
 {
 if (args.IsSettingsInvoked)
 SelectedItem = SettingsItem;
 else
 SelectedItem = Find(args.InvokedItem.ToString());
 }

 private void Frame_Navigated(object sender, NavigationEventArgs e)
 => SelectedItem = (e.SourcePageType == SettingsPageType)
 ? SettingsItem : Find(e.SourcePageType) ?? base.SelectedItem;

 private void ShellPage_BackRequested(object sender, BackRequestedEventArgs e)
 => _frame.GoBack();

 NavigationViewItem Find(string content)
 => MenuItems.OfType<NavigationViewItem>()
 .SingleOrDefault(x => x.Content.Equals(content));

 NavigationViewItem Find(Type type)
 => MenuItems.OfType<NavigationViewItem>()
 .SingleOrDefault(x => type.Equals(x.GetValue(NavProperties.
PageTypeProperty)));

 public virtual void Navigate(Frame frame, Type type)
 => frame.Navigate(type);

 public new object SelectedItem
 {
 set
 {
 if (value == SettingsItem)
 {
 Navigate(_frame, SettingsPageType);
 base.SelectedItem = value;
 _frame.BackStack.Clear();
 }
 else if (value is NavigationViewItem i && i != null)
 {
 Navigate(_frame, i.GetValue(NavProperties.PageTypeProperty) as Type);
 base.SelectedItem = value;
 _frame.BackStack.Clear();
 }
 UpdateBackButton();
 }
 }

 private void UpdateBackButton()
 {
 SystemNavigationManager.GetForCurrentView().AppViewBackButtonVisibility =
 (_frame.CanGoBack) ? AppViewBackButtonVisibility.Visible
 : AppViewBackButtonVisibility.Collapsed;
 }
}

Figure 5 NavViewEx, an Extended NavigationView

1217msdn_NixonXAML_v4_34-40.indd 39 11/8/17 8:56 AM

http://www.msdnmagazine.com

msdn magazine40 Universal Windows Platform

With the Frame’s Navigated event, NavViewEx looks for the
property in the resulting page, injecting the optional value into the
NavigationView’s Header. The new attached Page property can be
scoped to individual pages and localized through the UWP x:Uid
localization subsystem. The code in Figure 6 shows how updating
the header effectively introduces only two new lines of code to
the extended control.

In this simple example the default TextBlock in the Header is
accepted. In my experience, and corroborated by Microsoft’s first-
party, in-box apps, a CommandBar control typically takes up this
valuable screen real estate. If I wanted the same in my app, I could
update the HeaderTemplate property with this simple markup:

<NavigationView.HeaderTemplate>
 <DataTemplate>
 <CommandBar>
 <CommandBar.Content>
 <Grid Margin="12,5,0,11" VerticalAlignment="Stretch">
 <TextBlock Text="{Binding}"
 Style="{StaticResource TitleTextBlockStyle}"
 TextWrapping="NoWrap" VerticalAlignment="Bottom"/>
 </Grid>
 </CommandBar.Content>
 </CommandBar>
 </DataTemplate>
</NavigationView.HeaderTemplate>

That TextBlock styling mimics the control’s default Header, placing
it inside a globally available CommandBar, which can programmati-
cally be implemented by an app on a page-by-page or global context.
As a result, the basic design is visually the same, but its functional
potential is significantly expanded.

The Narrow Item Header Issue
One problem remains. As described early in this article, the Naviga-
tionView has different display modes that vary based on view width.
It also can explicitly open and close the menu pane. When the menu
pane is open, its width is determined by the value of the OpenPane
Length property. Don’t get me started on that property name using
Length instead of Width. Anyway, here’s the important part: That
property value doesn’t impact the width of the menu pane when it’s
closed; in the closed state, the pane width is hardcoded to 48px wide.

Here, NavigationViewItems look great with their icons set to
48px wide, but NavigationViewItemHeaders have only one Content
property, and it’s the same if the pane is open or closed. Attractive
when open, the text is truncated when closed, as shown in Figure 7.

What to do? I first thought of adding an Icon to headers, but when
the pane is closed it would look like a NavigationViewItem, but
with the bizarre and possibly frustrating behavior of not respond-
ing to taps. I thought about alternate text, but inside 48px there’s
barely room for three characters. I finally landed on hiding headers
when the pane is closed, as shown in the following code snippet:

RegisterPropertyChangedCallback(IsPaneOpenProperty, IsPaneOpenChanged);
private void IsPaneOpenChanged(DependencyObject sender,
 DependencyProperty dp)
{
 foreach (var item in MenuItems.OfType<NavigationViewItemHeader>())
 {
 item.Opacity = IsPaneOpen ? 1: 0;
 }
}

In this case, changing its visibility prevented any sudden movement
of the items in the list. This is not only the easiest to implement, it’s
also visually pleasant, and somewhat intuitive as to why it’s occurring.
Because NavigationView doesn’t expose an Opened or Closed event,
you register for a dependency property change on the IsPaneOpen-
Property using RegisterPropertyChangedCallback, a handy utility
introduced with Windows 8. I’ll identify the callback and toggle
every header. If I wanted to, I could treat different headers in dif-
ferent ways; this example handles all headers the same.

Wrapping Up
What’s beautiful about the Universal Windows Platform and XAML
is the abundance of solutions to problems. No control meets the needs
of every developer. No API meets the needs of every design. Building
on a rich platform with extensive love for its developers turns snags

into solutions with just a drop of code and a lit-
tle effort. It lets you create your own signature
experiences with unique value propositions
that set your app apart in the ecosystem. Now,
even the hamburger menu is a simple addition
to your look-and-feel with opportunities for
extensions around every corner. 	 n

Jerry Nixon is an author, speaker, developer and evange-
list in Colorado. He trains and inspires developers around
the world to build better apps with crafted code. Nixon
spends the bulk of his free time teaching his three daugh-
ters Star Trek character backstories and episode plots.

Thanks to the following technical expert for
reviewing this article: Daren May

private void Frame_Navigated(object sender,
 Windows.UI.Xaml.Navigation.NavigationEventArgs e)
{
 SelectedItem = Find(e.SourcePageType);
 UpdateHeader();
}

private void UpdateHeader()
{
 if (_frame.Content is Page p
 && p.GetValue(NavProperties.HeaderProperty) is string s
 && !string.IsNullOrEmpty(s))
 {
 Header = s;
 }
}

Figure 6 Updating the Header

Figure 7 NavigationViewHeader in Open and (Narrow) Closed States

1217msdn_NixonXAML_v4_34-40.indd 40 11/8/17 8:56 AM

SUPPORTED BY

magazine

PRODUCED BY vslive.com/austinmsdn

April 30 – May 4, 2018
Hyatt Regency Austin

Austin,TX

VSLive! 1999 VSLive! 2017

Register to code
with us today!
Register Now and Save $300!
Use promo code AUONE

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!

Development Topics Include:
> Visual Studio / .NET
> JavaScript / Angular
> Xamarin
> Software Practices
> Database and Analytics

> ASP.NET / Web Server
> ALM / DevOps
> Azure/Cloud
> UWP
> Hands-On Labs

We’re Gonna
Code Like It’s 2018!

Untitled-2 1 11/8/17 12:06 PM

www.vslive.com/austinmsdn

msdn magazine42

Visual Studio for Mac is a fully featured native development
environment designed for building cross-platform applications
with Xamarin and .NET Core on macOS. The IDE enables pro-
ductivity through a rich set of features and tools, combined with
powerful customizations that allow developers to implement their
preferences. In my previous article (msdn.com/magazine/mt845621), I
discussed Visual Studio for Mac productivity from the point of view
of the code editor and debugging tools. In this article, I’ll focus on
the customization points that Visual Studio for Mac offers, and the
impact those points have on productivity. Most of the customiza-
tions described in this article can be done in the Preferences dialog,
which you open by selecting the Visual Studio Preferences menu.

Applying Languages and Themes
Visual Studio for Mac quickly allows you to change the display
language for the UI. You can do this in the Visual Style tab of the
Preferences dialog, selecting one of the available languages from the
User Interface Language combo box. Currently, Visual Studio for

Mac supports the following languages: Chinese (China and Taiwan),
Czech, French, German, Italian, Japanese, Korean, Polish, Portuguese
(Brazil), Russian, Spanish, Turkish and, of course, English.

In the same tab, you can change the appearance of the Visual
Studio for Mac UI with different themes. At the time of this writ-
ing, Visual Studio for Mac offers two themes: Light and Dark. You
can apply a theme by selecting the Visual Style tab in the Pref-
erences dialog, and then select a theme from the User Interface
Theme dropdown.

When you select a different theme, you’ll be invited to restart
Visual Studio. At restart, you’ll see how the theme affects not only
the code editor, but the entire workspace, including the pads and
dialogs. Figure 1 shows an example based on the Dark theme.

You can actually change the theme for the code editor only, rather
than for the complete workspace. This can be useful to keep the
editor window highlighted. The Color Theme tab in the Preferences
dialog allows you to select from a long list of built-in themes, as well
as any themes you create and import on your own. Visual Studio
for Mac supports the Visual Studio (.vssettings), Xamarin Studio
(.json) and TextMate (.tmTheme) formats, so you can quickly
import new themes by simply pressing the Add button and spec-
ifying one or more supported themes.

Customizing Keyboard Shortcuts
Visual Studio for Mac offers a huge number of predefined key-
board shortcuts, referred to as key bindings, that make quick work
of invoking common commands by reducing time spent mousing
around the interface. Key bindings are completely customizable,

V IS UAL ST UD IO

Customizing Visual Studio
for Mac
Alessandro Del Sole

This article discusses:
•	Customizing keyboard shortcuts

•	Customizing Fonts

•	Applying themes and custom layouts

•	Extensions and custom commands

Technologies discussed:
Visual Studio for Mac, Visual Studio Extensions

1217msdn_DelSoleVSMac_v3_42-45.indd 42 11/7/17 12:15 PM

http://msdn.com/magazine/mt845621

43December 2017msdnmagazine.com

and you can change them in the Key Bindings tab of the prefer-
ences dialog. As you can see in Figure 2, key bindings are grouped
by menu. You can change a key binding by clicking a command
and then entering the new binding in the Edit Binding textbox.

Visual Studio for Mac provides a number of built-in schemes
with key bindings that recall the same shortcuts used in other pop-
ular development tools, such as Visual Studio Code and Xcode.
For example, if you’ve been building apps with Xcode for a while,
you can select the Xcode scheme
and use the same keyboard short-
cuts in Xcode for the code editor
and debugging in Visual Studio for
Mac. As another example, if you’ve
been working with Visual Studio
on Windows and now you need to
work with Visual Studio for Mac,
you can select the Visual Studio
(Windows) scheme to make use
of its familiar keyboard shortcuts.

Customizing Fonts
Visual Studio for Mac gives you
control over the fonts used in the
code editor, the Output pad, and all
other pads (pads are tool windows
that can be rearranged and docked
in the workspace). Just click the
Fonts tab in the Preferences dia-
log box to access this functionality.

To make a font change, select the
font you want to replace, then click
the new font (with style and size) in
the Select Font dialog. A preview
window lets you see what the new
font selection will look like. Note
that you can replace a default font
with the newly selected font via the
Set To Default button.

Adding Custom
Commands
A common need for developers is
to be able to launch external tools
from within the development envi-
ronment against one or more files
in the solution. For example, you
might want to launch a professional
image-editing tool on a bitmap
you have in a project, or you might
want to launch a particular code
editor or command line against a
file in a project. Visual Studio for
Mac allows you to launch external
tools by adding new custom com-
mands to the Tools menu.

To accomplish this, open the External Tools tab in the Preferences
dialog and then click Add. In the screen that appears, provide the
details for the external tool, such as the text you want to be displayed
in the Tools menu (Title field), the tool to be launched (Command
field), command arguments such as file or folder names (Argu-
ments field), the directory where the command must be executed
(Working directory field) and a keyboard shortcut (Key Binding
field). Figure 3 shows an example that launches Visual Studio Code.

Figure 1 Visual Studio for Mac with Dark Theme

Figure 2 Customizing Key Bindings

1217msdn_DelSoleVSMac_v3_42-45.indd 43 11/7/17 12:15 PM

http://www.msdnmagazine.com

msdn magazine44 Visual Studio

Notice that, for the Arguments and Working directory fields, the
target pathname must be supplied via one of the supported constants,
such as ${FilePath} that represents the pathname of the current file.
However, it isn’t necessary to remember all the possible constants and
their meaning. In fact, you can click the arrow-down button at the
right of both fields to select a target, and Visual Studio for Mac will
show a human-readable description for each target, then will place the

corresponding constant into the field
when you select the desired target.

With regard to Figure 3, you’ll
see File Path in the list of possible
targets (which represents the cur-
rent file). When you select this
option, Visual Studio for Mac will
add the ${FilePath} constant into
the Arguments field. You can also
select multiple targets in one field.

Finally, it’s worth mentioning
the checkboxes at the bottom of
the dialog. If selected, Prompt for
arguments will cause Visual Studio
to ask you to enter additional argu
ments that will be passed to the
external tool. When the Save current
file checkbox is selected, the target
file will be saved before the external
tool is launched. By checking the
Use output window checkbox, the
output of the external tool will be
redirected to the Output pad in
Visual Studio, which is extremely

convenient so that you won’t need to shift your focus outside of the IDE.
After you click OK, you’ll see a new command in the Tools menu, the
text of which exactly matches the string you entered in the Title field.

Working with Custom Layouts
You can arrange the layout of Visual Studio for Mac by displaying
or hiding some pads, and by moving and docking pads to a differ-

ent position in the workspace. The IDE ships with
four built-in, general-purpose layouts called Code,
Design, Debug and Test, all available in the View
menu, and each quickly allowing you to switch to
a different pad layout depending on the context.
For example, when you start debugging an applica-
tion, Visual Studio for Mac automatically switches
to the Debug layout and then goes back to the pre-
vious layout, usually Code or Design, once you’re
finished. However, it is common to rearrange the
IDE layout based on the developer’s preferences or
on the type of the solution with which the devel-
oper is working. For example, when working with
Xamarin solutions, you might need specific pads
that you don’t use with ASP.NET Core solutions
and vice versa, or you might want to organize pads
in a way that’s similar to Visual Studio on Windows.

Instead of manually rearranging pads every time,
Visual Studio for Mac lets you save your own layouts
with the Save Current Layout command in the View
menu. This command asks you to enter the name of
the new layout, then stores your current layout and
adds its name in the View menu, below the names
of the built-in layouts. This way you can quickly Figure 4 Displaying the List of Installed Extensions

Figure 3 Adding a Command to Invoke an External Tool

1217msdn_DelSoleVSMac_v3_42-45.indd 44 11/7/17 12:15 PM

45December 2017msdnmagazine.com

switch to your favorite layout with a single click. Once you select a
custom layout, the View menu also enables the Delete Current Layout
command for removing custom layout from the list. As you might
expect, this command is disabled for built-in layouts.

Extending Visual Studio
Visual Studio for Mac is an environment built upon modules that
expose a number of extensibility points. This means that other
modules can be installed and that the IDE can be extended with
third-party packages, referred to as extensions. This allows you
to add new productivity features and tools to Visual Studio. You
install, update and manage extensions in the Extension Manager
dialog, which you enable with the Extensions command in the
Visual Studio menu. In the Installed tab (see Figure 4), you can
see the list of installed extensions grouped by category.

You can select an extension and see detailed information in
the window to the right. You also have the option to disable or
uninstall an extension.

Some built-in, integrated tools in Visual Studio for Mac are
extensions themselves. For these extensions, the Uninstall button
is generally unavailable and the Disable button is only available if
disabling the extension doesn’t affect the core features of the IDE.
Extensions that are part of the core of Visual Studio for Mac, such
as the ChangeLog Add-in in Figure 4, are presented in gray in the
Extension Manager.

If you switch to the Gallery tab, you’ll see a list of available
extensions from an online gallery, as shown in Figure 5. In the
Repository combo box you can choose to see only stable exten-
sions, only beta release extensions or all extensions.

When you’ve found an extension of interest, click its name
on the left, review the details on the right and then click Install.

Visual Studio will ask for confirmation and then
install the selected extension. Depending on the
extension, you’ll find the IDE updated with new
project templates, new menu commands, new
pads or new context commands. The description
you get in the Extension Manager tool should
clarify how you access the new tools.

It’s worth mentioning that you can also
develop your own extensions for Visual Studio
for Mac using an extension called Add-in Maker,
which you can find under the Extension Devel-
opment group of the Gallery tab in the Extension
Manager. This package will install all the tools
you need to build extensions, including specific
project templates that appear in the Miscella-
neous node of the New Project dialog.

Add-in Maker is an open source project
(bit.ly/2zKxWIa) that’s already emerged as the tool
of choice for building extensions for IDEs such
as Xamarin Studio and MonoDevelop. The
official Microsoft documentation provides an
interesting page that explains the extensibility
points in Visual Studio for Mac (bit.ly/2yIpvNn)
and a walk-through that provides an example

based on a simplified extension that makes it possible to insert the
current date in the active editor through a command added to the
Edit menu (bit.ly/2yJ1V4E). If you plan to build extensions for Visual
Studio for Mac with Add-in Maker, I strongly recommend you
read these documents before you get started.

Wrapping Up
Productivity often depends on how comfortable the developer
feels with an IDE. Visual Studio for Mac puts productivity at its
core, enabling developers to customize the most important areas
of the workspace. As a developer, you can localize the UI by
selecting from a list of available cultures. You can change the
visual theme to get the colors you like most, and you can custom-
ize fonts according to your preferences. You can also rearrange the
pads layout and save each layout for later use, so that you won’t
need to manually rearrange pads every time.

Of course, Visual Studio for Mac can be enhanced with custom
commands to invoke external tools, which is a very common need.
And it can be extended with third-party packages that make it
easier to add new features and tools. Combined, these capabili-
ties enable developers to feel more comfortable with the IDE and
to customize it in a way to maximize productivity. 	 n

Alessandro Del Sole has been a Microsoft MVP since 2008. Awarded MVP of
the Year five times, he has authored many books, eBooks, instructional videos and
articles about .NET development with Visual Studio. Del Sole works as a senior
.NET Developer, focusing on .NET and mobile app development, training and
consulting. He has recently authored an upcoming book called “Beginning Visual
Studio for Mac” (bit.ly/2hsRxYx). You can follow him on Twitter: @progalex.

Thanks to the following Microsoft technical expert for reviewing this article:
Jordan Matthiesen

Figure 5 Discovering and Installing Extensions from the Online Gallery

1217msdn_DelSoleVSMac_v3_42-45.indd 45 11/7/17 12:15 PM

http://www.msdnmagazine.com
www.bit.ly/2zKxWIa
www.bit.ly/2yIpvNn
www.bit.ly/2yJ1V4E
www.bit.ly/2hsRxYx
www.twitter.com/progalex

msdn magazine46

Mixed reality (MR) has a lot of potential for enhancing
the way users interact with their environment. You can build
immersive worlds for them to explore, or you can extend the real
world with digital objects. Whether creating next-generation games,
education tools or business apps, MR lets you build new ways of
interacting with the digital world. In this article I’m going to show
you how to take your MR app further into the real world—away
from onscreen buttons and to a conversation-based interface—by
using Microsoft Cognitive Services.

Cognitive Services is a powerful complement to MR. One of the
limits of MR is its comprehension of the world. Tools like Spatial
Mapping provide the MR system with an understanding of surfaces
and collision points (where your digital content can rest but not

pass through). Cognitive Services allows you to turn surfaces into
tables, chairs, flooring and more. In other words, Cognitive Services
lets MR understand that a particular surface is not just a surface,
but a wooden table. Beyond understanding the environment, Cog-
nitive Services enables MR to further reflect the physical world
by using speech for interactions with digital objects, and custom
gestures to tailor how people think about interacting with objects.

For this article, I’m going to build an MR app using Unity, C# and
Vuforia. You’ll want to start with Unity Beta 2017.3.0b3, which has
Vuforia as an installation option. Make sure to install the Vuforia
components for this version of Unity. To use Vuforia, you’ll need
to sign up for the Developer Portal and set up your targets there.
Details about how to set up your Vuforia account can be found at
bit.ly/2yrE6yH. Keep in mind that because you’ll be using Unity, you’ll
be working with the Microsoft .NET Framework 3.5.

What Am I Building?
I’ll be building an app for Contoso Power, an energy utility that is
using MR for field services. The application will provide answers
to technicians in the field based on the equipment the technician

MIXE D RE AL IT Y

Using Cognitive Services
in Mixed Reality
Tim Kulp

This article discusses:
•	Building a mixed reality (MR) question-and-answer app for field

technicians

•	Creating a target-based MR scene

•	Adding conversational interaction to the app

Technologies discussed:
Unity, Vufonia, Microsoft Cognitive Services, HoloLens, C#

Code download available at:
bit.ly/2gF8LhP

Cognitive Services is a powerful
complement to MR.

1217msdn_KulpMR_v2_46-51.indd 46 11/7/17 12:20 PM

www.bit.ly/2gF8LhP

47December 2017msdnmagazine.com

scans for the MR experience. Imagine that each piece of equip-
ment has unique repair instructions. When the technician scans
the MR marker on the equipment, the system identifies the ques-
tion/answer set to use. The technician can then verbally activate
the app’s “listening mode,” ask the question (again verbally) and get
an audio response from the app. When the technician is finished,
they can end the call. I’m going to use MR to load a digital model
(sometimes called the digital twin) of an object and then add a con-
versational interface to allow the technician to learn more about
how to service the equipment.

When you download the sample code from bit.ly/2gF8LhP, you’ll
get all the digital assets for this project. There are two separate
Unity projects, one called Start and one called Complete. Start is
an empty solution with only some digital assets to get you going.
Complete contains all the scripts and digital assets for reference.
I’ll be working from Start but I’m also providing Complete for
clarification of a few items.

Building the First MR Scene
Target-based MR scenes—also known as marker-based augment-
ed reality (AR)—have three components:

• �ARCamera: This is the camera of the device viewing the
MR scene.

• �Target: This is the real-world object that triggers the digital
content to appear.

• �Stage: This is the world that the MR elements exist within.
When you open the Start project, you’ll find only a Main Camera

and Directional Light showing. Delete the Main Camera and click
on Game Object | Vuforia | AR Camera. This will add the basic
AR Camera to your scene. Click on the AR Camera and then on
Open Vuforia Configuration. This is where you need to add the App
License Key you created from the Vuforia
Developer Portal, as shown in Figure 1.
If you haven’t done that already, click
the Add License button to go through
the tutorial. Unity 2017.3 is connected to
the Vuforia developer workflow, which
allows you to easily jump from Unity to
the Vuforia Developer Portal.

Once your key is loaded, you can add
targets. First, however, you need to have
a target database for your MR app. Click
the Add Database button (still in the
Vuforia Configuration inspector). This
opens the Vuforia portal where you can
create a new target database—a collection
of image or object targets that will trig-
ger your MR content to appear. Create a
new database, add some image targets
and then download the Unity package
of the database. Adding this package to
your Unity project imports your image
targets. One important note: image tar-
gets need to have a lot of tracking points
to provide the best MR target scanning

experience. I’ve included some sample targets in the Assets/images
folder of the Start Unity project. Feel free to use these images for
your image targets. Once you’ve downloaded and installed the
Unity package for your target database, click on the checkbox (in
Vuforia Configuration) by the name of the target database you
just loaded. This loads the target database into Unity for your app
to use. Finally, click the Activate checkbox to enable the target
database to be available on app start.

Before you leave the Vuforia Configuration view, there’s one more
setting to check. Depending on your computer’s camera, you might
need to change the WebCam settings at the bottom of the screen. I’m
developing on a Surface Pro 4, and its cameras aren’t recognized by
default. If you have a similar issue, open {Project Root}\Assets\Editor\
QCAR\WebcamProfiles\profiles.xml and add the following XML:

<webcam deviceName="Microsoft Camera Rear">
 <windows>
 <requestedTextureWidth>640</requestedTextureWidth>
 <requestedTextureHeight>480</requestedTextureHeight>
 <resampledTextureWidth>640</resampledTextureWidth>
 </windows>
</webcam>

This will register the rear camera for
the Surface Pro 4. If you want the front
camera, just change the deviceName to
Microsoft Camera Front.

Now the app is ready for an image tar-
get. Go to Game Object | Vuforia | Image.
This will create an image target in your
scene. In the Inspector | Image Target
Behavior window, select Database to
the target database you just loaded. Then
select the image target you want to
use from your database. The surface of
the image target will now look like the
image target selected.

To complete your MR scene, drag a
3D model from the Prefabs folder to be
a child of the image target. When the AR
Camera (which is the device’s camera at
run time) sees the image target, the child
3D model will appear in the world over
the image target. At this point, your MR
app is ready. Make sure you have a printed
copy of the image target you selected and
give the app a run.Figure 1 The Vuforia Configuration Inspector

One important note:
image targets need to have

a lot of tracking points to
provide the best MR target

scanning experience.

1217msdn_KulpMR_v2_46-51.indd 47 11/7/17 12:20 PM

http://www.msdnmagazine.com
www.bit.ly/2gF8LhP

msdn magazine48 Mixed Reality

Getting Conversational
Now that the app can see an image target and generate a digital
object, let’s create an interaction. I’m going to keep the interaction
very simple and leverage a mix of the Windows Speech libraries
that run on the device and the Speech API provided with Microsoft
Cognitive Services. The questions the technician can ask, along with
the answers, will be stored in the QnA Maker Service, one of the
knowledge management offerings in Microsoft Cognitive Services.
QnA Maker is a service that allows you to set up a question/answer
pair using an existing FAQ, a formatted text file or even using the QnA
input form through the service. Using your existing FAQ URLs or a
text file exported from an existing knowledge management system
lets you get up and running with the QnA Maker Service quickly
and easily. Learn more about QnA Maker at qnamaker.ai.

Here’s the flow: The user activates listening mode using a key-
phrase; the user asks a question, which is compared against the
QnA Maker Service to find an answer; the answer is returned as
text, which is then sent to the Speech API for transformation into
an audio file; the audio is returned and played to the user; the user
deactivates listening mode using a keyphrase.

To keep this simple, I won’t be using Language Understanding
Intelligence Service (LUIS), but as you explore this solution, I
encourage you to leverage LUIS to create a more natural conver-
sation for users.

To start implementing the conversation components, I always
create a Managers object to hold the various components needed

to manage the scene overall. Create an empty Game Object called
Managers and place it on the root of the scene.

Users of this app will start the conversation by saying “Hello
Central.” This short statement is ideal for the KeywordRecognizer
object. When the app hears Hello Central, it’s akin to saying “Hey
Cortana”—it triggers the app to listen for more commands.

First, I’ll create the KeywordRecognizer to listen for the key
words: Hello Central. To do this, I’ll create a new C# script in the
Scripts folder called KeywordRecognizer, then, within the class,
I’ll add a new class called KeywordAndResponse:

public class KeywordRecognizer : MonoBehaviour {
 [System.Serializable]
 public struct KeywordAndResponse {
 public string Keyword;
 public UnityEvent Response;
 }
 public KeywordAndResponse[] Keywords;
public bool StartAutomatically;
private UnityEngine.Windows.Speech.KeywordRecognizer recognizer;

Next, I’ll implement the Start method to load the keywords and
responses that will be provided through the Unity Editor inter
face to the app:

void Start () {
 List<string> keywords = new List<string>();
 foreach(var keyword in Keywords)
 keywords.Add(keyword.Keyword);

 this.recognizer =
 new UnityEngine.Windows.Speech.KeywordRecognizer(keywords.ToArray());
 this.recognizer.OnPhraseRecognized += KeywordRecognizer_OnPhraseRecognized;
 this.recognizer.Start();
}

In the Start method, I loop through each of the keywords to get a
list of words. Then I register these words with the KeywordRecog-
nizer, connect the OnPhraseRecognized event to a handler and
finally start the recognizer. The OnPhraseRecognized method is
called any time a phrase in the keywords list is heard by the app:

private void KeywordRecognizer_OnPhraseRecognized(
 PhraseRecognizedEventArgs args){
 foreach(var keyword in Keywords){
 if(keyword.Keyword == args.text){
 keyword.Response.Invoke();
 return;
 }
 }
}

This event loops through the word list to find the response,
then calls the Invoke method to trigger the UnityEvent. By con-
figuring the KeywordAndResponse object as I did, I can use the
UnityEditor to configure the KeywordRecognizer. As stated before,
this is a lite implementation of the the more reobust HoloToolkit
KeywordRecognizer code.

Once KeywordRecognizer hears Hello Central, the app needs to
listen for the next command. One challenge in building a knowledge
management app like this is that knowledge can change. To make
that change easy to capture and communicate across any platform,
I’ll use the QnA Maker Service to build a question-and-answer for-
mat for knowledge management. The QnA Maker Service is still in
preview, but documentation can be found at qnamaker.ai.

I’m going to build another C# script component called Qand
AManager (create this script in your Scripts folder) to interact
with the QnA Maker Service. Note that in this code I’ll be using
the UnityEngine.Windows.Speech namespace, which is avail-
able only in Windows. If you want to do this for Android or iOS,

HoloToolkit is an excellent jumpstart to your
HoloLens project. KeywordRecognizer already exists there and is
much more robust than my sample, so why not use the
HoloToolkit in this article? The reason is that I’m not building a
HoloLens-only system. Instead, I’m setting the groundwork for you
to build an app for the Surface Pro that can work on HoloLens but
isn’t constrained to it. Not every company is ready to take on the
cost of a HoloLens for their fleet. The concepts presented here
allow you to build for the Samsung GearVR, Google ARCore and
even the Apple ARKit. If you’re familiar with the HoloToolkit, you’ll
notice that I’ve borrowed some of the implementation because, as
I said, it’s very good. However, I’ve kept the code lighter and more
concrete to work for the current scenario.

Why Not Use HoloToolkit?

I’m going to keep the interaction
very simple and leverage a mix
of the Windows Speech libraries

that run on the device and
the Speech API provided with
Microsoft Cognitive Services.

1217msdn_KulpMR_v2_46-51.indd 48 11/7/17 12:20 PM

https://qnamaker.ai
https://qnamaker.ai

49December 2017msdnmagazine.com

you need to implement the Speech to Text API from Microsoft
Cognitive Services, which can be found at bit.ly/2hKYoJh.

I’ll start the QandAManager with the following classes:
public class QandAManager : MonoBehaviour {
 [Serializable]
 public struct Question {
 public string question;
 }
 [Serializable]
 public struct Answer {
 public string answer;
 public double score;
 }

These classes will be used to serialize the questions and answers
to send to the QnA Maker Service. Next, I’ll add some properties:

public string KnowledgeBaseId;
public string SubscriptionKey;
public AudioSource Listening;
public AudioSource ListeningEnd;
public string EndCommandText;
private DictationRecognizer recognizer;
private bool isListening;
private string currentQuestion;

KnowledgeBaseId will be used to determine which knowl-
edge base to load, depending which image target is being viewed.

SubsciptionKey is used to identify the app to the QnA Maker
Service. Listening and ListeningEnd are audio cues to tell the user
that the system is listening, or not. EndCommandText is the “hang
up” command, in this case, “Thank You Central.” The rest I’ll dis-
cuss as they’re implemented.

StartListening is the public method that triggers the QandA-
Manager to start listening:

public void StartListening() {
 if (!isListening) {
 PhraseRecognitionSystem.Shutdown();
 recognizer = new DictationRecognizer();
 recognizer.DictationError += Recognizer_DictationError;
 recognizer.DictationComplete += Recognizer_DictationComplete;
 recognizer.DictationResult += Recognizer_DictationResult;
 recognizer.Start();
 isListening = true;
 Listening.Play(0);
 }
}

This turns on DictationRecognizer, connects the events and plays
the sound to indicate the app is now listening. Only one recognizer
can be running at a given time, which means KeywordRecognizer
needs to be shut down before the DictationRecognizer can start.
PhraseRecognitionSystem.Shutdown stops all KeywordRecognizers,
as shown in Figure 2.

The Recognizer_DictationResult event takes the text the app
hears and triggers the StopListening method if the EndCommand-
Text phrase is recognized:

public void StopListening() {
 recognizer.Stop();
 isListening = false;
 ListeningEnd.Play(0);
 recognizer.DictationError -= Recognizer_DictationError;
 recognizer.DictationComplete -= Recognizer_DictationComplete;
 recognizer.DictationResult -= Recognizer_DictationResult;
 recognizer.Dispose();
 PhraseRecognitionSystem.Restart();
}

Otherwise, it performs GetResponse. For the sake of brevity,
I won’t go into the DictationError and DictationComplete events
as they don’t directly add to my solution. Please refer to the
Complete Unity project to see an implementation.

StopListening shuts down the DictationRecognizer, discon-
nects all the events and then restarts the KeywordRecognizer.
If the user initiates another interaction via Hello Central, the
StartListening method will again be triggered and reconnect the
DictationRecognizer.

The GetResponse method calls the getResponse coroutine:
private void GetResponse(){
 StartCoroutine(getResponse());
}

A coroutine is a function that can run across frames in Unity
(for more information see bit.ly/2xJGT75). In this instance, get-
Response is going to reach out to the QnA Maker Service, send a
question and get back an answer, as shown in Figure 3. If you’re
not a Unity developer, the JSONUtility class might be new to you.
JSONUtility is a class built into Unity to serialize JSON objects to
and from C# objects. In Figure 3, I’m using JsonUtility.ToJson to
convert the Question object to a JSON representation to send to
the QnA Maker Service.

For brevity I didn’t include checking w.error to handle any error
that comes from the QnA Maker Service, but you should make
sure to handle errors accordingly.

private void Recognizer_DictationResult(
 string text, ConfidenceLevel confidence) {
 if (confidence == ConfidenceLevel.Medium
 || confidence == ConfidenceLevel.High){
 currentQuestion = text;
 if (currentQuestion.ToLower() == EndCommandText.ToLower()) {
 StopListening();
 }
 else {
 GetResponse();
 }
 }
}

Figure 2 Stopping All KeywordRecognizers

private IEnumerator getResponse(){
 string url = "https://westus.api.cognitive.microsoft.com/" +
 "qnamaker/v1.0/knowledgebases/{0}/generateAnswer";
 url = string.Format(url, KnowledgeBaseId);
 Question q = new Question() { question = currentQuestion };
 string questionJson = JsonUtility.ToJson(q);
 byte[] questionBytes =
 System.Text.UTF8Encoding.UTF8.GetBytes(questionJson);

 Dictionary<string, string> headers = new Dictionary<string, string>();
 headers.Add("Ocp-Apim-Subscription-Key", SubscriptionKey);
 headers.Add("Content-Type", "application/json");

 WWW w = new WWW(url, questionBytes, headers);
 yield return w;
 if (w.isDone){
 Answer answer = JsonUtility.FromJson<Answer>(w.text);
 TextToSpeechManager tts = GetComponent<TextToSpeechManager>();
 tts.Say(answer.answer);
 }
}

Figure 3 The getResponse Coroutine

Once KeywordRecognizer hears
Hello Central, the app needs to
listen for the next command.

1217msdn_KulpMR_v2_46-51.indd 49 11/7/17 12:20 PM

http://www.msdnmagazine.com
www.bit.ly/2hKYoJh
www.bit.ly/2xJGT75

msdn magazine50 Mixed Reality

In the code in Figure 3, you can see a reference to the TextTo-
SpeechManager, which is the next component I’ll build. As its name
suggests, TextToSpeechManager will take the text and turn it into
an audio file. Before I do this, though, I’ll first build a component
that allows the app to determine which knowledge base ID to use
based on which image target is being viewed.

Identifying the Target
In Vuforia, targets can implement the ITrackableEventHandler to
perform custom actions when the target’s recognition status changes
or even when the user changes from one target to another. In this
app, I’m going to update the QandAManager KnowledgeBaseId
property when the target is recognized.

I’ll create a new C# script in the Scripts folder called TargetTracker
and add it to the Managers game object. Inside TargetTracker, I’ll
add the ITrackableEventHandler interface:

public class TargetTracker : MonoBehaviour, ITrackableEventHandler {
 private TrackableBehaviour mTrackableBehaviour;
 public QandAManager qnaManager;
 public string KnowledgeBaseId;

The public KnowledgeBaseId value is a string you set to identify
which KnowledgeBaseId to use when the target is recognized. The
qnaManager object is a reference to the QandAManager compo-
nent. Now I’ll configure the component in Start to connect the
TrackableBehavior and QandAManger:

void Start () {
 mTrackableBehaviour = GetComponent<TrackableBehaviour>();
 if (mTrackableBehaviour) {
 mTrackableBehaviour.RegisterTrackableEventHandler(this);
 }
}

Finally, I’ll set the OnTrackableStateChanged event to update
the knowledge base Id of the QandAManager with the knowledge
base Id for this component:

public void OnTrackableStateChanged(
 TrackableBehaviour.Status previousStatus,
 TrackableBehaviour.Status newStatus){
 if (newStatus == TrackableBehaviour.Status.DETECTED ||
 newStatus == TrackableBehaviour.Status.TRACKED ||
 newStatus == TrackableBehaviour.Status.EXTENDED_TRACKED){
 qnaManager.KnowledgeBaseId = KnowledgeBaseId;
 }
}

With the code complete you can add the TargetTracker compo-
nent to the Image Target in your scene. Next, take the subscription
key from the QnA Maker Service and enter it into the QandAMan-
ger subscription key. Then take the knowledge base Id provided by
the QnA Maker Service and add that to the TargetTracker associated
with your scene’s image target. If you have multiple knowledge bases,
you just need to update the knowledge base Id per target to switch
which questions and answers users can ask per target.

When setting up the QnA Maker Service, remember to format
your questions the way you expect users to ask them. Developers with
experience working with users know that predicting user behavior,
especially how users will ask a question, is very difficult. To help you
build better questions and answers, consider implementing a telem-
etry tool like Application Insights or another logging mechanism
to capture the questions users are asking. This will help you tailor
your UX to deliver the best answers to the most common questions.

Talking Back
A conversation goes two ways. One way is the user talking to the
app; the other is the app talking to the user. HoloToolkit has a great
text-to-speech control, but for this article I’m going to set up and
use the Cognitive Services Text to Speech API. Using the Cognitive
Services Text to Speech capability allows the app to be more por-
table across platforms.

Before I start coding the solution, I should note that the Unity
classes WWW, WWWForm and UnityWebRequest have a few
limitations that create challenges for the code I’m about to write.
One such limitation is that to get a token in the Speech API, you
must POST an empty body to the token URL. WWW, WWWForm
and UnityWebRequest all require you to provide something in the
body of a post. But if you provide anything in the body, the Speech
API will return a 400 Bad Request error. To solve this, I’m going to
be using the C# WebRequest class, which doesn’t support corou-
tines. To this end, I’ll get the token for the speech API during the
Start method of the component.

I’ll create a new C# script in the Scripts folder called TextToSpeech-
Manager and add it to the Managers game object. This component
will hold all of my text-to-speech capabilities and expose a public
method called Say(string text) to be used by the QnAManager for
saying the answer returned from the QnA Service. I’ll start the com-
ponent with a few public variables:

public class TextToSpeechManager : MonoBehaviour {
 public string SubscriptionKey;
 public string SSMLMarkup;
 public Genders Gender = Genders.Female;
 public AudioSource audioSource;
 private string token;
 private string ssml;

SubscriptionKey stores the token the app will need to get an
authentication token from the Speech API. This key is obtained
from the Azure Portal by adding the Cognitive Services Speech API.
SSMLMarkup is the XML content I’ll use to generate speech from
the Speech API. For this article I’ve set up the default value to be:

<speak version='1.0' xml:lang='en-US'>
 <voice xml:lang='en-US'
 xml:gender='{0}'
 name='Microsoft Server Speech Text to Speech Voice (en-US, ZiraRUS)'>{1}</voice>
</speak>

Here, {0} will be replaced with the Gender value and {1} will be
the text to send to the Speech API.

Now I’ll add the Start method:
void Start(){
 ServicePointManager.ServerCertificateValidationCallback =
 remoteCertificateValidationCallback;
 token = getToken();
}

Start begins by setting up a custom server certificate validation
so that Unity can handle the authentication process with the Speech

One challenge in building
a knowledge management

app like this is that knowledge
can change.

1217msdn_KulpMR_v2_46-51.indd 50 11/7/17 12:20 PM

51December 2017msdnmagazine.com

API. The complete code for the validation can be found in the
Complete Unity project. Next, I call getToken, which connects to
the Speech API authentication service and returns the token to
use for future calls to the API:

private string getToken(){
 WebRequest request =
 WebRequest.Create("https://api.cognitive.microsoft.com/sts/v1.0/issueToken");
 request.Headers.Add("Ocp-Apim-Subscription-Key",
 SubscriptionKey);
 request.Method = "POST";
 WebResponse response = request.GetResponse();
 Stream responseStream = response.GetResponseStream();
 StreamReader reader = new StreamReader(responseStream);
 return reader.ReadToEnd();
}

The getToken method is a straightforward connection to the
issueToken endpoint, passing in the subscription key and read-
ing the token as a string returned from the API service. However,
the token is obtained at start and might time out. In the Complete
Unity project, you’ll find token refresh code.

The Say method is the public method called in the QandAManger.
The signature for this method has a few different parts, with the
basic flow being: prepare the SSML, send it to the Speech API, get
the audio file, save the file and then load the file as an audio clip.

public void Say(string text){
 ssml = string.Format(
 SSMLMarkup,
 Enum.GetName(typeof(Genders), Gender),
 text);
 byte[] ssmlBytes =
 System.Text.UTF8Encoding.UTF8.GetBytes(ssml);

This first block of code gets the ssml and prepares it for trans-
mission to the API by converting it to a byte array. Next, I prepare
the request to the Speech API:

HttpWebRequest request =
 (HttpWebRequest)WebRequest.Create("https://speech.platform.bing.com/synthesize");
request.Method = "POST";
request.Headers.Add("X-Microsoft-OutputFormat", "riff-16khz-16bit-mono-pcm");
request.Headers.Add("Authorization", "Bearer " + token);
request.ContentType = "application/ssml+xml";
request.SendChunked = false;
request.ContentLength = ssmlBytes.Length;
request.UserAgent = "ContosoEnergy";

In the headers I add X-Microsoft-OutputFormat and set it to
riff-16khz-16bit-mono-pcm so the Speech API will return a .wav
file. Unity needs a .wav file to stream the audio clip later in the
say method. Notice the request.SendChunked = false statement.
This ensures the Transfer Encoding property isn’t set to chunked,

which would cause a timeout (408) error when connecting to the
Speech API. I also update the UserAgent to be ContosoEnergy
because the default Unity value is too long for the Speech API to accept.

With the request and headers prepared, I write the ssmlBytes
to the request stream:

Stream postData = request.GetRequestStream();
postData.Write(ssmlBytes, 0, ssmlBytes.Length);
postData.Close();

Next, I get the response and prepare the file path for saving the
audio file that came back from the Speech API:

HttpWebResponse response = (HttpWebResponse)request.GetResponse();
string path = string.Format("{0}\\assets\\tmp\\{1}.wav",
 System.IO.Directory.GetCurrentDirectory(),
 DateTime.Now.ToString("yyyy_mm_dd_HH_nn_ss"));

Then I save the audio file and call the say coroutine:
using (Stream fs = File.OpenWrite(path))
using (Stream responseStream = response.GetResponseStream()){
 byte[] buffer = new byte[8192];
 int bytesRead;
 while ((bytesRead =
 responseStream.Read(buffer, 0, buffer.Length)) > 0){
 fs.Write(buffer, 0, bytesRead);
 }
}
StartCoroutine(say(path));
}

The last method needed here is the coroutine to read the .wav
file and play it as audio. The WWW object has a built-in www.Get
AudioClip function that makes it easy to load and play a file:

private IEnumerator say(string path) {
 WWW w = new WWW(path);
 yield return w;
 if (w.isDone) {
 audioSource.clip = w.GetAudioClip(false, true, AudioType.WAV);
 audioSource.Play();
 }
}

As before, I omitted the w.error check for brevity, but always
make sure to handle errors in your code.

Wrapping Up
In this article I built a basic marker-based MR application using
Vuforia and Unity. By using image targets, I set up the basic capabil
ity to scan an image to generate digital content. I then implemented
the Windows KeywordRecognizer and DictationRecognizer com-
ponents to allow the app to listen to the user. I took the text from
the DictationRecognizer and enabled the app to respond to ques-
tions via the QnA Maker Service. Finally, I enabled the app to talk
back to the user with the Cognitive Services Speech API.

The goal of combining MR and Cognitive Services is to create
immersive experiences in which the physical and digital worlds
blur into one cohesive interaction. I encourage you to download
the code and extend it with LUIS or the Computer Vision APIs to
bring the user even further into your app.	 n

Tim Kulp is the director of Emerging Technology at Mind Over Machines in
Baltimore, Md. He’s a mixed reality, artificial intelligence and cloud app develop-
er, as well as author, painter, dad, and “wannabe mad scientist maker.” Find him
on Twitter: @tim_kulp or via LinkedIn: linkedin.com/in/timkulp.

Thanks to the following technical experts for reviewing this article:
Alessandro Del Sole (Microsoft) and Will Gee (BaltiVirtual)

The goal of combining MR
and Cognitive Services is to

create immersive experiences
in which the physical and

digital worlds blur into one
cohesive interaction.

1217msdn_KulpMR_v2_46-51.indd 51 11/7/17 12:20 PM

http://www.msdnmagazine.com
www.twitter.com/tim_kulp
www.linkedin.com/in/timkulp

msdn magazine52

When software does something it’s not supposed to do
according to its functional specification, it’s said to have defects or
bugs. The rules in that specification that determine when accesses
and modifications to data and other resources should be allowed
collectively constitute a security policy. The security policy essen-
tially defines what it means for the software to be secure, and when
a particular defect should be considered as a security flaw rather
than just another bug.

Given various threats from around the world, security is more
important than ever today and, as such, must be an integral part
of the software development lifecycle (SDL). This includes choices
such as where to store data, which C/C++ runtime APIs to use, and
which tools can help make the software more secure. Following
the C++ Core Guidelines (bit.ly/1LoeSRB) substantially helps in
writing correct, maintainable code. In addition, the Visual C++
compiler offers many security features that are easily accessible
through compiler switches. These can be classified as either static

or dynamic security analyses. Examples of static security checks
include using the /Wall and /analyze switches and the C++ Core
Guidelines checkers. These checks are performed statically and
don’t affect the generated code, though they do increase compila-
tion time. In contrast, dynamic checks are inserted in the emitted
executable binaries by the compiler or the linker. I’ll discuss in this
article specifically one dynamic security analysis option, namely
/GS, which provides protection against stack-based buffer over-
flows. I’ll explain how the code is transformed when that switch is
turned on and when it can or can’t secure your code. I’ll be using
Visual Studio Community 2017.

You might wonder, why not just turn on all these compiler
switches and be done with it. In general, you should employ all
the recommended switches regardless of whether you understand
how they work. However, knowing the details of how a particular
technique works enables you to determine the impact that it may
have on your code and how to better make use of it. Consider, for
example, buffer overflows. The compiler does offer a switch to deal
with such defects, but it uses a detection mechanism that forces
the program to crash when a buffer overflow is detected. Does that
improve security? It depends. First, while all buffer overflows are
bad, not all are security vulnerabilities and so it doesn’t necessarily
mean an exploitation took place. And even if it did, the damage
might have already been done by the time the detection mecha-
nism was triggered. Moreover, depending on how your application
is designed, abruptly crashing the program may not be suitable

C++

Visual C++ Support
for Stack-Based Buffer
Protection
Hadi Brais

This article discusses:
•	Control flow attacks

•	GuardStack and the /GS switch

•	Using BinSkim to verify GuardStack

Technologies discussed:
Visual C++, GuardStack, BinSkim

1217msdn_BraisSecurity_v3_52-58.indd 52 11/7/17 12:12 PM

www.bit.ly/1LoeSRB

53December 2017msdnmagazine.com

because it could by itself be a denial-of-service (DoS) vulnerability
or lead to a potentially worse situation involving data loss or cor-
ruption. As I’ll explain in this article, the only reasonable thing to
do is to make the application resilient to such crashes, rather than
disabling or changing the protection mechanism.

I’ve written a number of articles on compiler optimizations for
MDSN Magazine (you’ll find the first at msdn.com/magazine/dn904673).
The goal was mainly to improve execution time. Security can also be
viewed as an objective of compiler transformations. That is, rather
than optimizing execution time, security would be optimized by
reducing the number of potential security flaws. This perspective
is useful because it suggests that when you specify multiple com-
piler switches to improve both execution time and security, the
compiler might have multiple, potentially conflicting goals. In this
case, it has to somehow balance or prioritize these goals. I’ll discuss
the impact that /GS has on some aspects of your code, particularly
speed, memory consumption, and executable file size. That’s
another reason to understand what these switches do to your code.

In the next section, I’ll provide an introduction to control flow
attacks with particular focus on stack buffer overflows. I’ll dis-
cuss how they occur and how an attacker can exploit them. Then
I’ll look in detail at how /GS impacts your code and the degree to
which it can mitigate such exploits. Finally, I’ll demonstrate how
to use the BinSkim static binary analysis tool to perform a number
of critical verification checks on a given executable binary without
requiring the source code.

Control Flow Attacks
A buffer is a block of memory used to temporarily store data to
be processed. Buffers can be allocated from the runtime heap, the
thread stack, directly using the Windows VirtualAlloc API, or as
a global variable. Buffers can be allocated from the runtime heap
either using the C memory allocation functions (such as malloc)
or the C++ new operator. Buffers can be allocated from the stack

using either an automatic array variable or the _alloca function.
The minimum size of a buffer can be zero bytes and the maximum
size depends on the size of the largest free block.

Two particular features of the C and C++ programming languages
that truly distinguish them from other languages, such as C#, are:

• �You can do arbitrary arithmetic on pointers.
• �You can successfully dereference any pointer anytime as long

as it points to allocated memory (from the point of view
of the OS), though the behavior of the application may be
undefined if it doesn’t point at the memory it owns.

These features make the languages very powerful, but they con-
stitute a great threat at the same time. In particular, a pointer that’s
intended to be used to access or iterate over contents of a buffer
might be erroneously or maliciously modified so that it points out-
side the bounds of the buffer to either read or write adjacent or other
memory locations. Writing beyond the largest address of a buffer is
called a buffer overflow. Writing before the smallest address of a buf-
fer (which is the address of the buffer) is called a buffer underflow.

A stack-based buffer overflow vulnerability has been discovered
recently in an extremely popular piece of software (which I won’t
name). This resulted from using the sprintf function unsafely, as
shown in the following code:

sprintf(buffer, "A long format string %d, %d", var1, var2);

The buffer is allocated from the thread stack and it’s a fixed size.
However, the size of the string to be written to the buffer depends
on the number of characters required to represent two specified
integers. The size of the buffer isn’t sufficient to hold the largest
possible string, resulting in a buffer overflow when large integers
are specified. When an overflow occurs, adjacent memory loca-
tions higher up in the stack get corrupted.

To demonstrate why this is dangerous, consider where a buffer
allocated from the stack would typically be located in the stack
frame of the declaring function according to standard x86 calling
conventions and taking into consideration compiler optimizations,
as shown in Figure 1.

First, the caller pushes any arguments that aren’t passed through
registers onto the stack in a certain order. Then, the x86 CALL
instruction pushes the return address onto the stack and jumps to
the first instruction in the callee. If frame pointer omission (FPO)
optimization doesn’t take place, the callee pushes the current frame
pointer onto the stack. If the callee uses any exception-handling
constructs that haven’t been optimized away, an exception-handling
frame would next be placed onto the stack. That frame contains
pointers to and other information about exception handlers
defined in the callee. Non-static local variables that haven’t been Figure 1 A Typical x86 Stack Frame

A thread’s
stack grows
toward lower
addresses.

Arguments

Return Address

Frame Pointer

Exception Handling Frame

Automatic Variables

Callee-Saved Registers

_alloca Buffers

The minimum size of a buffer
can be zero bytes and the

maximum size depends on the
size of the largest free block.

1217msdn_BraisSecurity_v3_52-58.indd 53 11/7/17 12:12 PM

http://www.msdnmagazine.com
http://msdn.com/magazine/dn904673

msdn magazine54 C++

optimized away and that can’t be held in registers or that spill from
registers are allocated from the stack in a certain order. Next, any
callee-saved registers used by the callee must be saved on the stack.
Finally, dynamically sized buffers allocated using _alloca are placed
at the bottom of the stack frame.

Any of the data items on the stack may have certain alignment
requirements, so padding blocks may be allocated as required. The
piece of code in the callee that sets up the stack frame (except for
the arguments) is called the prolog. When the function is about to
return to its caller, a piece of code called the epilog is responsible for
deallocating the stack frame up to and including the return address.

The main difference between the x86/x64 and ARM calling con-
ventions is that the return address and frame pointer are held in
dedicated registers in ARM rather than on the stack. Nonetheless,
stack buffer out-of-bounds accesses do constitute a serious security
issue on ARM because other values on the stack may be pointers.

A stack buffer overflow (writing beyond the upper bound of
a buffer) may overwrite any of the code or data pointers that are
stored above the buffer. A stack buffer underflow (writing below
the lower bound of a buffer) may overwrite the values of the
callee-saved registers, which may also be code or data pointers. An
arbitrary out-of-bounds write will either cause the application to
crash or behave in an undefined way. However, a maliciously craft-
ed attack enables the attacker to take control of the execution of
the application or the whole system. This can be achieved by over-
writing a code pointer (such as the return address) so that it points
to a piece of code that executes the attacker’s intent.

GuardStack (GS)
To mitigate stack-based out-of-bounds accesses, you could manually
add the necessary bounds checks (adding if statements to check that
a given pointer is within the bounds) or use an API that performs
these checks (for example, snprintf). However, the vulnerability may
still persist for different reasons, such as incorrect integer arithmetic
or type conversions used to determine the bounds of buffers or to
perform bounds checking. Therefore, a dynamic mitigation mecha-
nism to prevent or reduce the possibility of exploitation is required.

General mitigation techniques include randomizing the address
space and using non-executable stacks. Dedicated mitigation tech-
niques can be classified according to whether the goal is to prevent
out-of-bounds accesses from occurring by capturing them before

they occur, or to detect out-of-bounds accesses at some point
after they occur. Both are possible, but prevention adds substan-
tial performance overhead.

The Visual C++ compiler offers two detection mechanisms that
are somewhat similar, but have different purposes and different
performance costs. The first mechanism is part of the runtime
error checks, which can be enabled using the /RTCs switch. The
second is GuardStack (called Buffer Security Check in the doc-
umentation and Security Check in Visual Studio), which can be
enabled using the /GS switch.

With /RTCs, the compiler allocates additional small memory
blocks from the stack in an interleaving manner such that every local
variable on the stack is sandwiched between two such blocks. Each
of these additional blocks is filled with a special value (currently,
0xCC). This is handled by the prolog of the callee. In the epilog, a
runtime function is called to check whether any of these blocks were
corrupted and report a potential buffer overflow or underflow. This
detection mechanism adds some overhead in terms of performance
and stack space, but it’s designed to be used for debugging and
ensuring program correctness, not just as a mitigation.

GuardStack, on the other hand, was designed to have lower over-
head and as a mitigation that can actually work in a production,
potentially malicious, environment. So /RTCs should be used for
debug builds and GuardStack should be used for both builds. In
addition, the compiler doesn’t allow you to use /RTCs with com-
piler optimizations, while GuardStack is compatible and doesn’t
interfere with compiler optimizations. By default, both are enabled
in the Debug configuration while only GuardStack is enabled in
the Release configuration of a Visual C++ project. In this article,
I’ll only discuss GuardStack in detail.

When GuardStack is enabled, a typical x86 call stack would look
like what’s shown in Figure 2.

Figure 2 A Typical x86 Stack Frame Protected Using
GuardStack (/GS)

A thread’s
stack grows
toward lower
addresses.

Arguments

Return Address

Frame Pointer

Exception Handling Frame

Automatic Variables that Are GC Buffers

Automatic Variables that Are Not GC Buffers

Callee-Saved Registers

_alloca Buffers

Security Cookie

Vulnerable Arguments

The main difference between
the x86 and ARM calling

conventions is that the return
address and frame pointer are
held in dedicated registers in
ARM rather than on the stack.

1217msdn_BraisSecurity_v3_52-58.indd 54 11/7/17 12:12 PM

Untitled-5 1 7/6/17 3:22 PM

www.spreadsheetgear.com

msdn magazine56 C++

There are three differences compared to the stack layout shown
in Figure 1. First, a special value, called a cookie or a canary, is
allocated just above the local variables. Second, local variables that
are more likely to exhibit overflows are allocated above all other
local variables. Third, some of the arguments that are particularly
sensitive to buffer overflows are copied to an area below local vari-
ables. Of course, to make these changes happen, a different prolog
and epilog are used, as I’ll discuss now.

The prolog of a protected function would include roughly the
following additional instructions on x64:

sub rsp,8h
mov rax,qword ptr [__security_cookie]
xor rax,rbp
mov qword ptr [rbp],rax

An additional 8 bytes is allocated from stack and is initialized to
a copy of the value of the __security_cookie global variable XOR’d
with the value held in the RBP register. When /GS is specified, the
compiler automatically links the object file built from gs_cookie.c
source file. This file defines __security_cookie as a 64-bit or 32-bit
global variable of the type uintptr_t on x64 and x86, respective-
ly. Therefore, each Portable Executable (PE) image compiled with
/GS includes a single definition of that variable used by the prologs
and epilogs of the functions of that image. On x86, the code is the
same except that 32-bit registers and cookies are used.

The basic idea behind using a security cookie is to detect, just
before the function returns, whether the value of the cookie has
become different from that of the reference cookie (the global vari-
able). This indicates a potential buffer overflow caused by either an
exploitation attempt or just an innocent bug. It’s crucial that the
cookie has very high entropy to make it extremely difficult for an
attacker to guess. If an attacker is able to determine the cookie
used in a particular stack frame, GuardStack fails. I’ll discuss more
about what GuardStack can and can’t do later in this section.

The reference cookie is given an arbitrary constant value when
the image is emitted by the compiler. Therefore, it must be carefully
initialized, basically before any code is executed. Recent versions
of Windows are aware of GuardStack and will initialize the cookie
to a high-entropy value at load time. When /GS is enabled, the first
thing the entry point of an EXE or DLL does is initialize the cookie
by calling the __security_init_cookie defined in gs_support.c and
declared in process.h. This function initializes the image’s cookie
if it hasn’t been appropriately initialized by the Windows loader.

Note that without XOR’ing with RBP, merely leaking the reference
cookie at any point during execution (using an out-of-bounds read,
for example) is sufficient to subvert GuardStack. XOR’ing with RBP
enables you to efficiently generate different cookies and the attacker

would need to know both the reference cookie and the RBP to figure
out the cookie for one stack frame. RBP by itself isn’t guaranteed to have
high entropy because its value depends on how the compiler optimized
the code, the stack space consumed so far, and the randomization per-
formed by address space layout randomization (ASLR), if enabled.

The epilog of a protected function would include roughly the
following additional instructions on x64:

mov rcx,qword ptr [rbp]
xor rcx,rbp
call __security_check_cookie
add esp,8h

First, the cookie on the stack is XOR’d to produce a value that’s
supposed to be the same as the reference cookie. The compiler emits
instructions to ensure that the value of RBP used in the prolog and
epilog is the same (unless it somehow got corrupted).

The __security_check_cookie function, declared in vcruntime.h,
is linked by the compiler and its purpose is to validate the cookie
that’s on the stack. This is done mainly by comparing the cookie
with the reference cookie. If the check fails, the code jumps to
the __report_gsfailure function, which is defined in gs_report.c.
On Windows 8 and later, the function terminates the process by
calling __fastfail. On other systems, the function terminates the
process by calling UnhandledExceptionFilter after removing any
potential handler. Either way, the error is logged by Windows
Error Reporting (WER) and it contains information in which stack
frame the security cookie got corrupted.

When /GS was first introduced in Visual C++ 2002, you could over-
ride the behavior of a failed stack cookie check by specifying a callback
function. However, since the stack is in an undefined state and since
some code already got executed before the overflow was detected,
there’s almost nothing that can be reliably done at that point. Therefore,
later versions starting with Visual C++ 2005 eliminated this feature.

The Overhead of GuardStack
To minimize overhead, only those functions that the compiler
considers vulnerable are protected. Different versions of the com-
piler may use different undocumented algorithms to determine
whether a function is vulnerable, but in general, if a function
defines an array or a large data structure and obtains pointers to
such objects, it’s likely that it will be considered vulnerable. You
can specify that a particular function not be protected by applying
__declspec(safebuffers) to its declaration. However, this keyword
is ignored when applied to a function that’s inlined in a protected
function or when a protected function is inlined in it. You can
also force the compiler to protect one or more functions using the
strict_gs_check pragma. The security development lifecycle (SDL)

To minimize overhead,
only those functions that the

compiler considers vulnerable
are protected.

It’s crucial that the cookie
has very high entropy to make

it extremely difficult for an
attacker to guess.

1217msdn_BraisSecurity_v3_52-58.indd 56 11/7/17 12:12 PM

57December 2017msdnmagazine.com

checks, enabled using /sdl, specifies strict GuardStack on all source
files and other dynamic security checks.

GuardStack copies vulnerable parameters to a safer location
below local variables so that if an overflow occurrs, it would be
more difficult to corrupt those parameters. A parameter that’s a
pointer or a C++ reference may qualify as a vulnerable parameter.
Refer to the documentation on /GS for more information.

I’ve conducted a number of experiments using C/C++ pro-
duction applications to determine the overhead related to both
performance and image size. I’ve applied strict_gs_check on all
source files so the results are independent of what the compiler con-
siders vulnerable functions (I refrained from using /sdl because it
enables other security checks, which have their own overheads). The
largest performance overhead I got was 1.4 percent and the largest
image size overhead was 0.4 percent. The worst-case scenario would
occur in a program that spends most of its time calling protected
functions that do very little work. Well-designed real programs
don’t exhibit such behavior. Keep in mind also that GuardStack
incurs a potentially non-negligible stack space overhead.

On the Effectiveness of GuardStack
GuardStack is designed to mitigate only a specific type of vulnerabil-
ity, namely stack buffer overflow. More important, using GuardStack
by itself against this vulnerability may not provide a high degree of
protection because there are ways for an attacker to go around it:

• �The detection of a corrupt cookie occurs only when the
function returns. A lot of code might get executed between
the time the cookie is corrupted and the time that corrup-
tion is detected. That code might be using other values from
the stack, above or below the cookie, that have been over-
written. This creates an opportunity for an attacker to take
(partial) control of the execution of the application. In that
case, detection may not even take place at all.

• �A buffer overflow can still occur without overwriting the
cookie. The most dangerous case would be overflowing a
buffer allocated using _alloca. Even protected arguments
and callee-saved registers can be overwritten in this case.

• �It may be possible to leak some of the cookies using out-of-
bounds memory reads. Because different images use differ-
ent reference cookies, and because cookies are XOR’d with
the RBP, it can be more challenging for an attacker to make
use of leaked cookies. However, the Windows Subsystem
for Linux (WSL) might have introduced another way to leak
cookies. WSL provides an emulation of the fork Linux sys-
tem call by which a new process is created that duplicates

the parent process. If the application being attacked forks a
new process to handle incoming client requests, a malicious
client can issue a fairly small number of requests to deter-
mine the values of the security cookies.

• �A number of techniques have been proposed to guess an
image’s reference cookie in certain situations. I’m not aware
of any successful real attacks in which the reference cookie
was guessed, but the probability of success isn’t tiny enough
to dismiss it. XOR’ing with RBP adds another very import-
ant layer of defense against such attacks.

• �GuardStack mitigates vulnerabilities by introducing differ
ent potential vulnerabilities, in particular, DoS and data loss.
When the corruption of a cookie is detected, the application
is abruptly terminated. For a server application, the attacker
can cause the server to crash, potentially losing or corrupt-
ing valuable data.

Therefore, it’s important that you first strive to write correct,
secure code with the help of static analysis tools. Then, following
the defense-in-depth strategy, employ GuardStack and other
dynamic mitigations offered by Visual C++ (many of which are
enabled by default in the Release build) in the code you ship.

/GS with /ENTRY
The default entry point function (*CRTStartup) specified by the com-
piler when you compile to produce an EXE or a DLL file does four
things in order: initializes the reference security cookie; initializes
the C/C++ runtime; calls the main function of your application; and
terminates the application. You can use the /ENTRY linker switch to
specify a custom entry point. However, combining a custom entry
point with the effects of /GS can lead to interesting scenarios.

The custom entry point and any functions it calls are candidates
for protection. If the Windows loader appropriately initialized
the cookie, then any protected functions will use a copy of a ref-
erence cookie that’s the same in their prologs and epilogs. So no
problem will occur.

If Windows didn’t appropriately initialize the cookie and the
first thing the custom entry point does is to call __security_init_
cookie, then all protected functions will use the correct reference
cookie except for the entry point. Recall that a copy of the refer-
ence cookie is made in the epilog. Therefore, if the entry point
returns normally, the cookie will be checked in its epilog and the
check will fail, resulting in a false positive. To avoid this problem,
you should call a function to terminate the program (such as exit)
rather than returning normally.

If Windows didn’t appropriately initialize the cookie and the
entry point didn’t call __security_init_cookie, then all protected
functions will use the default reference cookie. Fortunately, since

Combining a custom entry
point with the effects of /GS can

lead to interesting scenarios.

GuardStack is designed
to mitigate only a specific type
of vulnerability, namely stack

buffer overflow.

1217msdn_BraisSecurity_v3_52-58.indd 57 11/7/17 12:12 PM

http://www.msdnmagazine.com

msdn magazine58 C++

this cookie is XOR’d with RBP, the entropies of the used cookies
won’t be zero. So you’ll still get some protection, especially with
ASLR. However, it’s recommend that you properly initialize the
reference cookie by calling __security_init_cookie.

Using BinSkim to Verify GuardStack
BinSkim is a light, static binary analysis tool that verifies the cor-
rectness of the usage of some of the security features used in a
given PE binary. One particular feature that BinSkim supports is
GuardStack. BinSkim is open source (github.com/Microsoft/binskim)
under MIT license and written completely in C#. It supports x86,
x64 and ARM Windows binaries that are compiled with recent ver-
sions of Visual C++ (2013+). You can either use it as a stand-alone
tool or, more interestingly, include (part of) it in your code. For
example, if you have an application that supports PE plug-ins, you
can use BinSkim to verify that a plug-in employs the recommended
security features and refuse to load it otherwise. I’ll discuss in this
section how to use BinSkim as a stand-alone tool.

As far as GuardStack is concerned, the tool verifies that the spec-
ified binary adheres to the following four rules:

• �EnableStackProtection: Checks the corresponding flag that’s
stored in the associated PDB file. If the flag isn’t found, the
rule fails. Otherwise, it passes.

• �InitializeStackProtection: Iterates the list of global functions
as defined in the associated PDB file to find the functions
__security_init_cookie and __security_check_cookie. If both
aren’t found, the tool considers that /GS wasn’t enabled. In this
case, EnableStackProtection should fail. If __security_init_cookie
wasn’t defined, the rule fails. Otherwise, it passes.

• �DoNotModifyStackProtectionCookie: Looks up the location
of the reference cookie using the load configuration data of
the image. If the location isn’t found, the rule fails. If the load
configuration data indicates that a cookie is defined, but its
offset is invalid, the rule fails. Otherwise, the rule passes.

• �DoNotDisableStackProtectionForFunctions: Uses the
associated PDB file to determine if there are any functions
with the __declspec(safebuffers) attribute applied on them.
The rule fails if any are found. Otherwise, it passes. Using
__declspec(safebuffers) is disallowed by the Microsoft SDL.

To use BinSkim, first download the source code from the GitHub
repository and build it. To run BinSkim, execute the following
command in your favorite shell:

binskim.exe analyze target.exe --output results.sarif

To analyze more than one image, you can use the following command:
binskim.exe analyze myapp*.dll --recurse --output results.sarif --verbose

Note that you can use wild cards in file paths. The --recurse switch
specifies that BinSkim should analyze images in subdirectories, too.
The --verbose switch tells BinSkim to include in the results file the
rules that passed—not just the ones that failed.

The results file is in the Static Analysis Results Interchange
Format (SARIF). If you open it in a text editor, you’ll find entries
that look like what’s shown in Figure 3.

Every rule has a rule ID. The rule ID BA2014 is the ID of the
DoNotDisableStackProtectionForFunctions rule. The Microsoft
SARIF SDK (github.com/Microsoft/sarif-sdk) includes the source code of
a Visual Studio extension that views SARIF files in Visual Studio.

Wrapping Up
The GuardStack dynamic mitigation technique is an extremely
important detection-based mitigation against stack buffer over-
flow vulnerabilities. It’s enabled by default in both the Debug and
Release builds in Visual Studio. It was designed to have a negli-
gible overhead for most programs so that it can be widely used.
However, it doesn’t provide an ultimate solution for such vulner-
abilities. Buffer overflows are common for buffers allocated from
the stack, but they can also occur in any allocated memory region.
Most prominently, heap-based buffer overflows are just as perilous.
For these reasons, it’s very important to use other mitigation tech-
niques offered by Visual C++ and Windows such as Control Flow
Guard (CFG), Address Space Layout Randomization (ASLR), Data
Execution Prevention (DEP), Safe Structured Exception Handling
(SAFESEH), and Structured Exception Handling Overwrite Pro-
tection (SEHOP). All of these techniques work synergistically to
harden your application. For more information on these techniques
and others, refer to bit.ly/2iLG9rq.	 n

Hadi Brais is a doctorate scholar at the Indian Institute of Technology Delhi,
researching compiler optimizations, computer architecture, and related tools
and technologies. He blogs on hadibrais.wordpress.com and can be contacted
at hadi.b@live.com.

Thanks to the following technical experts for reviewing this article:
Shayne Hiet-Block (Microsoft), Mateusz Jurczyk (Google), Preeti Ranjan
Panda (IITD), Andrew Pardoe (Microsoft)

{
 "ruleId": "BA2014",
 "level": "pass",
 "formattedRuleMessage": {
 "formatId": "Pass ",
 "arguments": [
 "myapp.exe",
]
 },
 "locations": [
 {
 "analysisTarget": {
 "uri": "file:///D:/src/build/myapp.exe"
 }
 }
]
}

Figure 3 BinSkim Analysis Results File

The GuardStack dynamic
mitigation technique is an

extremely important detection-
based mitigation against stack
buffer overflow vulnerabilities.

1217msdn_BraisSecurity_v3_52-58.indd 58 11/7/17 12:12 PM

mailto:hadi.b@live.com
http://github.com/Microsoft/binskim
http://github.com/Microsoft/sarif-sdk
www.bit.ly/2iLG9rq
http://hadibrais.wordpress.com

Where you need us most.

magazine

MSDN.microsoft.com

Untitled-3 1 11/6/17 6:01 PM

http://MSDN.microsoft.com

msdn magazine60

The logic of any realistic software application depends on some
external configuration data that, when fetched, drives the overall
behavior of the application. Generally speaking, there are three
types of configuration data: data fetched once and used everywhere,
data fetched frequently and used everywhere, and data fetched
on-demand just before use. The implementation of the latter two
types of configuration data are, for the most part, application-
specific. The first type, data fetched only once in the application’s
lifetime, tends to address the building of a wrapper API that hides
the actual data store as much as possible.

In classic ASP.NET, the web.config file was, among many other
things, the favorite repository of application-wide configuration
data. In ASP.NET Core, there’s no web.config file anymore, yet the
configuration API is richer and more flexible than ever before.

Configuration Data Providers
The configuration API is centered on the concept of the data
provider. The data provider retrieves data from a given source and
exposes it to the application in the form of name/value pairs.
ASP.NET Core comes with a few predefined configuration providers
able to read from text files (most notably JSON files), environment
variables and in-memory dictionaries. Configuration providers
are plugged into the system at application startup through the ser-
vices of the ConfigurationBuilder class. All providers linked to the
builder contribute their own name/value pairs and the resulting
collection is exposed as an IConfigurationRoot object.

While data always comes in as a name/value pair, the overall struc-
ture of the resulting configuration object might be hierarchical, as
well. It all depends on the actual nature and structure of the value
associated with the name. Taken from the constructor of a startup
class, the following code snippet shows how to build a configura-
tion tree combining together two different configuration providers:

// Env is a reference to the IHostingEnvironment instance
// that you might want to inject in the class via ctor
var dom = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("MyAppSettings.json")
 .AddInMemoryCollection(new Dictionary<string, string> {{"Timezone", "+1"}})
 .Build();

The AddJsonFile extension method adds name/value pairs from
the properties stored in the specified JSON file. Note that the JSON
file is listed through a relative path. The SetBasePath method, in
fact, sets the root directory where the system will start looking for
any such referenced files. Any JSON files can be used as a config-
uration data source. The structure of the files is completely up to

you and can include any level of nesting. Multiple JSON files can
be linked at the same time.

The AddInMemoryCollection method adds the content of the
specified dictionary. Note that both the key and the value type
of the dictionary must be string. At first sight, such an extension
method might seem of little help, because it just adds static data
that can only be set at compile time. However, an in-memory
collection still allows you to isolate parametric data and the pro-
vider model of the ASP.NET Core configuration API decouples
that data from the main body of the application and injects it for
you at startup, like so:

new ConfigurationBuilder()
 .AddInMemoryCollection(
 new Dictionary<string, string> {{"Timezone", "+1"}})
 .Build();

In the previous code snippet, for example, a value representing
the timezone to use is appended to the configuration builder, and
the rest of the application receives it through the unified interface
of the configuration API. In this way, you don’t have to change any-
thing other than the provider and the actual storage pattern to read
the timezone (as well as any other data you inject from memory)
from other data sources.

Finally, the method AddEnvironmentVariables adds any
environment variables defined in the server instance to the con-
figuration tree. Note that all defined environment variables are
added as a single block to the tree. If you need filtering, you’re best
off opting for an in-memory provider and copying only selected
variables to the dictionary.

Note that in ASP.NET Core 2.0 you can also inject IConfigu-
ration right in the constructor of the startup class, and have the
configuration tree automatically configured with environment
variables and content from two JSON files: appsettings.json and
appsettings.development.json. If you want JSON files with a
different name or another list of providers, just build the config-
uration tree from scratch as follows:

var dom = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("MyAppSettings.json")
 .AddInMemoryCollection(new Dictionary<string, string> {{"Timezone", "+1"}})
 .Build();

Custom Configuration Providers
In addition to using predefined providers, you can also create your
own configuration provider. To build a custom configuration pro-
vider, you start with a wrapper configuration source class—a plain
class that implements IConfigurationSource. Here’s an example:

Configuration of ASP.NET Core Applications

Cutting Edge DINO ESPOSITO

1217msdn_EspositoCEdge_v4_60-62.indd 60 11/8/17 8:55 AM

61December 2017msdnmagazine.com

public class MyDatabaseConfigSource : IConfigurationSource
{
 public IConfigurationProvider Build(IConfigurationBuilder builder)
 {
 return new MyDatabaseConfigProvider();
 }
}

In the implementation of the method Build, as shown in the
previous code snippet, you finally reference the actual provider—
namely a class that inherits from the system-defined Configuration
Provider class (see Figure 1).

A common example is a configuration provider that reads from an
ad hoc database table. The provider may ultimately hide the schema
of the table and the layout of the database involved. The connection
string, for example, might be a private constant value. Such a con-
figuration provider would likely use Entity Framework (EF) Core
to perform data access tasks and, therefore, needs to have available
a dedicated DbContext class and a dedicated set of entity classes to
fetch values to be later converted into a string/string dictionary. As
a nice touch, you might want to define default values for any of the
values expected to be found and populate the database, if empty.

The database-driven provider discussed here is closed around
a well-known database table. However, if you find a way to pass a
DbContextOptions object as an argument to the provider, you can

even manage to work with a rather generic EF-based provider. An
example of this technique can be found at bit.ly/2uQBJmK.

Building the Configuration Tree
The resulting configuration tree—personally, I like to call it the config-
uration document object model—is commonly built in the constructor
of the startup class. The output generated by the Build method of the
ConfigurationBuilder class is an object of type IConfigurationRoot.
The startup class will provide a member to save the instance for further
use at a later time throughout the entire application stack, like this:

public class Startup
{
 public IConfigurationRoot Configuration { get; }
 public Startup(IHostingEnvironment env)
 {
 var dom = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("MyAppSettings.json")
 .Build();
 Configuration = dom;
 }
}

The IConfigurationRoot object is the connection point for
the application components to read the individual values in the
configuration tree.

Reading Configuration Data
To read configuration data programmatically, you use the Get-
Section method on the IConfigurationRoot object. The value is
read as a plain string. To identify the exact value you want to read,
you provide a path string in which the colon symbol (:) is used to
delimit properties in a hierarchical schema. Suppose that your
ASP.NET Core project includes a JSON file like the one in Figure 2.

To read settings, you can proceed in many different ways, but
it’s mandatory that you know how to navigate to the actual value
in the configuration tree. For example, to locate the place where
the default size of the page is stored the path is:

Generalsettings:Paging:PageSize

Note that a path string is always case-insensitive. In light of this,
the simplest way to read settings is through the indexer API, like this:

var pageSize = Configuration["generalsettings:paging:pagesize"];

It’s important to note that the indexer API returns the value of
the setting as a string, but you can also use an alternate strongly
typed API. Here’s how that approach looks:

var pathString = "generalsettings:paging:pagesize";
var pageSize = Configuration.GetValue<int>(pathString);

The reading API is independent of the actual data source. You
use the same API to read hierarchical content from JSON as you
do to read flat content from in-memory dictionaries.

In addition to direct reading, you can leverage a positioning
API, which will conceptually move the reading cursor on a specific
configuration subtree. The GetSection method lets you select an
entire configuration subtree where you can act on using both the
indexer and the strongly typed API. The GetSection method is a
generic query tool for the configuration tree and isn’t specific of
JSON files only. An example is shown here:

var pageSize = Configuration.GetSection("Paging").GetValue<int>("PageSize");

Note that for reading you also have available a GetValue method
and the Value property. Both would return the value of the setting
as a plain string.

public class MyDatabaseConfigProvider : ConfigurationProvider
{
 private const string ConnectionString = "...";

 public override void Load()
 {
 using (var db = new MyDatabaseContext(ConnectionString))
 {
 db.Database.EnsureCreated();
 Data = !db.Values.Any()
 ? GetDefaultValues(db)
 : db.Values.ToDictionary(c => c.Id, c => c.Value);
 }
 }

 private IDictionary<string, string> GetDefaultValues (MyDatabaseContext db)
 {
 // Pseudo code for determining default values to use
 var values = DetermineDefaultValues();

 // Save default values to the store
 // NOTE: Values is a DbSet<T> in the DbContext being used
 db.Values.AddRange(values);
 db.SaveChanges();

 // Return configuration values
 return values;
 }
}

Figure 1 Sample Database-Driven Configuration Provider

{
 "ApplicationTitle" : "Programming ASP.NET Core",
 "GeneralSettings" : {
 "CopyrightYears" : [2017, 2018],
 "Paging" : {
 "PageSize" : 20,
 "FreezeHeaders" : true
 },
 "Sorting" : {
 "Enabled" : true
 }
 }
}

Figure 2 A Sample JSON File

1217msdn_EspositoCEdge_v4_60-62.indd 61 11/8/17 8:55 AM

http://www.msdnmagazine.com
www.bit.ly/2uQBJmK

msdn magazine62 Cutting Edge

Refreshing Loaded Configuration
In ASP.NET Core, the configuration API is designed to be read-only.
This only means that you can’t write back to the configured data
source using an official API. If you have a way to edit the content
of the data source (that is, programmatic overwrites of text files,
database updates and the like), then the system allows you reload
the configuration tree programmatically.

To reload a configuration tree, all you need to do is call the
Reload method in the configuration root object.

Configuration.Reload();

Typically, you might want to use this code from within an admin
page where you offer users a form to update stored settings. As far
as JSON files are concerned, you can also enable automatic reloads
of the content upon changes. You just add an extra parameter to
AddJsonFile, like so:

var dom = new ConfigurationBuilder()
 .AddJsonFile("MyAppSettings.json", optional: true, reloadOnChange: true);

JSON files are the most popular of the text file formats natively
supported by ASP.NET Core. You can also load settings from XML
and .ini files. You just add a call to AddXmlFile and AddIniFile
methods with the same rich signature of AddJsonFile.

Note that in ASP.NET Core 2, configuration can also be man-
aged right from the program.cs file, as shown here:

return new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .ConfigureAppConfiguration((builderContext, config) =>
 {
 var env = builderContext.HostingEnvironment;
 config.AddJsonFile("appsettings.json")
 });

If you do, then you can inject the configuration tree in the startup
class via IConfiguration in the constructor.

Passing Configuration Data Around
The configuration root object lives within the scope of the startup
class, but its content should be made available throughout the entire
application. The natural way of achieving this goal in ASP.NET Core
is via dependency injection (DI). To share the configuration root
object with the system, you just bind it to the DI system as a singleton.

public void ConfigureServices(IServiceCollection services)
{
 services.AddSingleton(Configuration);
 ...
}

After that, you can inject an IConfigurationRoot reference in any
controller constructors and Razor views. Here’s an example for a view:

@inject IConfigurationRoot Configuration
CURRENT PAGE SIZE IS @Configuration["GeneralSettings:Paging:PageSize"]

While injecting the configuration root object is possible, and to
a large extent even easy, it still results in a fairly cumbersome API if
access to configuration settings occurs too often. That’s why the ASP.NET
Core configuration API offers a serialization mechanism that lets you
save the configuration tree, all or in part, to a separate POCO class.

Serializing to POCO Classes
If you’ve ever done any ASP.NET MVC programming, you should
be familiar with the concept of model binding. A similar pattern—
called the Options pattern—can be used in ASP.NET Core to do
this, as shown here:

public void ConfigureServices(IServiceCollection services)
{
 // Initializes the Options subsystem
 services.AddOptions();
 // Maps the PAGING section to a distinct dedicated POCO class
 services.Configure<PagingOptions>(
 Configuration.GetSection("generalsettings:paging"));
}

In this example, you first initialize the configuration binding
layer, as shown in the previous code snippet, and then explicitly
ask to try to bind the content of the specified subtree to the public
properties of the given class, like this:

public class PagingOptions
{
 public int PageSize { get; set; }
 public bool FreezeHeaders { get; set; }
}

The bound class must be a POCO class with public getter/setter
properties and a default constructor. The Configure method will
attempt to fetch and copy values from the specified section of the
configuration tree right into a freshly created instance of the class.
Needless to say, binding will silently fail if values aren’t convert-
ible to declared types.

Such a POCO class can be passed around throughout the appli
cation stack using the built-in DI system. You don’t have to do
anything for this to happen. Or rather, any configuration required
is applied when you invoke AddOptions. Just one step remains to
programmatically access the configuration data serialized to a class:

public PagingOptions PagingOptions { get; }
public CustomerController(IOptions<PagingOptions> config)
{
 PagingOptions = config.Value;
}

If you use the Options pattern extensively in all of your controllers,
you might consider moving the options property (that is, Paging
Options) to a base class and then inherit your controller classes from
there. Likewise, you can inject IOptions<T> in any Razor views.

Wrapping Up
In classic ASP.NET MVC, the best practice for dealing with config-
uration data mandates that you load all of your data once at startup
into a global container object. The global object is then accessible from
controller methods and its content can be injected as an argument into
back-end classes such as repositories and even into views. In classic
ASP.NET MVC, the cost of mapping loose string-based data into the
strongly typed properties of the global container is entirely on you.

In ASP.NET Core, you have both a low-level API to read
individual values in a much more precise way than the Config-
urationManager API of old ASP.NET, and an automatic way to
serialize external content into POCO classes of your design. This
is possible because the introduction of the configuration tree—
populated by a list of providers—decouples configuration from
the main body of the application.	 n

Dino Esposito is the author of “Microsoft .NET: Architecting Applications for
the Enterprise” (Microsoft Press, 2014) and “Programming ASP.NET Core”
(Microsoft Press, 2018). Pluralsight author and developer advocate at JetBrains,
Esposito shares his vision of software on Twitter: @despos.

Thanks to the following Microsoft technical expert for reviewing this article:
Ugo Lattanzi

1217msdn_EspositoCEdge_v4_60-62.indd 62 11/8/17 8:55 AM

www.twitter.com/despos

0

5

25

75

95

100

Alachisoft-MSDN-Magazine-Ad-Feb-2017-Ver-1.0

Tuesday, February 14, 2017 3:56:01 PM

Untitled-6 1 3/6/17 2:20 PM

www.alachisoft.com
mailto:sales@alachisoft.com

msdn magazine64

The goal of a classification problem is to use the values of two or
more predictor variables (often called features in machine learning
[ML] terminology) to predict a class (sometimes called a label).
For example, you might want to predict the risk of a server failing
(low, medium, high) based on the average number of HTP requests
handled and the physical temperature of the server.

There are many ML classification techniques, including naive
Bayes classification, neural network classification, and decision tree
classification. The k-nearest neighbors (k-NN) algorithm is a rela-
tively simple and elegant approach. Relative to other techniques, the
advantages of k-NN classification are simplicity and flexibility. The
two primary disadvantages are that k-NN doesn’t work well with non-
numeric predictor values, and it doesn’t scale well to huge data sets.

This article explains exactly how k-NN classification works and
presents an end-to-end demo program written in C#. The best way
to see where this article is headed is to take a look at the demo pro-
gram in Figure 1. The demo problem is to predict the class (“0,” “1,”
“2”) of an item that has two predictor variables with values (5.25,
1.75). If k (the number of neighbor values to examine) is set to 1,
then the predicted class is “1.” If k is set to 4, the predicted class is
“2.” Behind the scenes, the demo program uses a set of 33 training
data items to make the predictions.

Many ML libraries have built-in k-NN classification functions,
but library functions can be difficult or impossible (due to legal
issues) to integrate into a production system. Understanding how
to implement k-NN classification from scratch gives you full con-
trol, and the ability to customize your system.

This article assumes you have intermediate or better programming
skills, but doesn’t assume you know anything about k-NN classi-
fication. The demo program is coded using C#, but you shouldn’t
have too much trouble refactoring the code to another language,

such as Java or Python. The demo program is a bit too long to
present in its entirety, but the complete source code is available in
the file download that accompanies this article.

Understanding the k-NN Algorithm
The graph in Figure 2 represents the data used in the demo pro-
gram. There are 33 training items. Each item has two predictor
values, x0 and x1. The k-NN algorithm can handle problems with
any number of predictors, but the demo uses just two so that the
problem can be easily visualized in a graph.

The values of the predictor variables are all between 0 and 9.
When performing k-NN classification, it’s important to normalize
the predictor values so that large magnitudes don’t overwhelm
small magnitudes. For example, suppose you have predictor vari-
ables annual income (such as $48,000) and age (such as 32). You
could normalize by dividing all income values by 10,000 (giving
values like 4.8) and dividing all age values by 10 (giving values like
3.2). Two other common normalization techniques are z-score
normalization and min-max normalization.

Many ML techniques, including k-NN classification, require
training data that has known, correct predictor values and class

Understanding k-NN Classification Using C#

Test Run

Code download available at msdn.com/magazine/1217magcode.

JAMES MCCAFFREY

Figure 1 Classification Demo Using the k-NN Algorithm

Many ML techniques, including
k-NN classification, require training

data that has known, correct
predictor values and class labels.

1217msdn_McCaffreyTRun_v3_64-67.indd 64 11/7/17 12:16 PM

http://msdn.com/magazine/1217magcode

65December 2017msdnmagazine.com

labels. The demo training data has three different classes, indicated
by red, green and yellow. The blue data point at (5.25, 1.75) is the
unknown to predict. When k is set to 1, k-NN finds the single,
closest training data item and returns the class of that closest data
item as the predicted class of the unknown item.

In this example, for the (5.25, 1.75) unknown item, the closest
training data item is the green (class = “1”) dot at (6.0, 1.0) so the
predicted class is “1.” When using k-NN, you must specify how
to measure distance between data items so you can define what
“closest” means. The demo program uses Euclidean distance. The
distance between (5.25, 1.75) and (6.0, 1.0) is sqrt((5.25 - 6.0)^2
+ (1.75 - 1.0)^2) = sqrt(0.5625 + 0.5625) = sqrt(1.1250) = 1.061, as
displayed in Figure 1.

When k is set to 4, the predicted class depends on the four nearest
training data items. In the demo example, the four closest items are
at (6.0, 1.0), (5.0, 3.0), (4.0, 2.0) and (4.0, 1.0). The associated class
labels for the items are (“1,” “0,” “2,” “2”). Because there are more “2”
labels than “0” and “1” labels, the predicted class is “2.”

When using k-NN you must specify how to determine the pre-
dicted class from the set of the k closest class labels. The demo
program uses a majority-vote approach. Notice that when using
a simple majority vote, you can run into tie situations. In practice,
however, k-NN majority-vote ties are relatively rare. The demo pro-
gram returns the lowest class label in case of ties. For example, if
the associated labels are (“2,” “1,” “1,” “2”), then the demo program
voting mechanism would return “1.”

The Demo Program
To code the demo program, I launched Visual Studio and created
a new C# console application program and named it KNN. I
used Visual Studio 2015, but the demo program has no significant
.NET Framework dependencies so any recent version of Visual
Studio will work fine.

After the template code loaded into the editor window, I right-clicked
on file Program.cs in the Solution Explorer window and renamed the
file to KNNProgram.cs, then allowed Visual Studio to automatically

rename class Program for me. At the top of the template-generated
code, I deleted all unnecessary using statements, leaving just the one
that references the top-level System namespace.

The overall program structure, with a few minor edits to save
space, is presented in Figure 3. The demo uses a simple static
method approach, and all normal error checking has been removed
to keep the main ideas clear.

The demo begins by setting up the training data:
static void Main(string[] args)
{
 Console.WriteLine(“Begin k-NN classification demo “);
 double[][] trainData = LoadData();
...

using System;
namespace KNN
{
 class KNNProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Begin k-NN classification demo ");

 double[][] trainData = LoadData();

 int numFeatures = 2;
 int numClasses = 3;

 double[] unknown = new double[] { 5.25, 1.75 };
 Console.WriteLine("Predictor values: 5.25 1.75 ");

 int k = 1;
 Console.WriteLine("With k = 1");
 int predicted = Classify(unknown, trainData,
 numClasses, k);
 Console.WriteLine("Predicted class = " + predicted);

 k = 4;
 Console.WriteLine("With k = 4");
 predicted = Classify(unknown, trainData,
 numClasses, k);
 Console.WriteLine("Predicted class = " + predicted);

 Console.WriteLine("End k-NN demo ");
 Console.ReadLine();
 }

 static int Classify(double[] unknown,
 double[][] trainData, int numClasses, int k) { . . }

 static int Vote(IndexAndDistance[] info,
 double[][] trainData, int numClasses, int k) { . . }

 static double Distance(double[] unknown,
 double[] data) { . . }

 static double[][] LoadData() { . . }

 } // Program class

 public class IndexAndDistance : IComparable<IndexAndDistance>
 {
 public int idx; // Index of a training item
 public double dist; // To unknown

 // Need to sort these to find k closest
 public int CompareTo(IndexAndDistance other)
 {
 if (this.dist < other.dist) return -1;
 else if (this.dist > other.dist) return +1;
 else return 0;
 }
 }

} // ns

Figure 3 Overall Program Structure

Figure 2 Demo Program Training Data

2.0 3.00.0 1.0
0.0

5.0

1.0

6.0 7.0 8.0

2.0

9.0

3.0

4.0

5.0

6.0

7.0

8.0

x1

4.0
x0

Dummy Data for k-NN Classification

(5.25, 1.75)(5.25, 1.75)

class 0 = red
class 1 = green
class 2 = yellow
unknown

1217msdn_McCaffreyTRun_v3_64-67.indd 65 11/7/17 12:16 PM

http://www.msdnmagazine.com

msdn magazine66 Test Run

The data is hardcoded and stored into an array-of-arrays-style
matrix. In a non-demo scenario you’d likely read data into mem-
ory from a text file. Because k-NN classification typically stores
all training data into memory, the technique doesn’t easily scale to
scenarios with very large data sets. Method LoadData is defined as:

static double[][] LoadData()
{
 double[][] data = new double[33][];
 data[0] = new double[] { 2.0, 4.0, 0 };
 ...
 data[12] = new double[] { 3.0, 4.0, 1 };
 ...
 data[32] = new double[] { 4.0, 2.0, 2 };
 return data;
}

The first two values of each item are the predictor values and the last
value is the class label. A common alternative design is to store predic-
tor values in a matrix, but store the class labels in a separate array. The
demo code assumes the class labels are numeric, and consecutively
numbered starting at 0. If your class labels are non-numeric, such as
“low,” “medium,” “high,” you must encode the data, either in a prepro-
cessing stage, or programmatically when reading the data into memory.

Next, the demo sets up the unknown item to predict, like so:
int numFeatures = 2;
int numClasses = 3;
double[] unknown = new double[] { 5.25, 1.75 };
Console.WriteLine("Predictor values: 5.25 1.75 ");

The demo program doesn’t actually use the numFeatures variable,
but as you’ll see shortly, there are many possible customization points
for k-NN classification, and a numFeatures value can be useful.

Next, the demo makes the simplest possible k-NN prediction:
int k = 1;
Console.WriteLine("With k = 1");
int predicted = Classify(unknown, trainData,
 numClasses, k);
Console.WriteLine("Predicted class = " + predicted);

The Classify method accepts parameters for the item to predict,
a matrix of training data, the number of classes in the training data,
and the number of nearest neighbors to evaluate. In principle, you
could implement method Classify so that it scans the training data
to programmatically determine the number of classes, but the
effort required outweighs the benefit, in my opinion.

The demo program concludes with:
...
 k = 4;
 Console.WriteLine(“With k = 4”);
 predicted = Classify(unknown, trainData,
 numClasses, k);
 Console.WriteLine(“Predicted class = “ + predicted);

 Console.WriteLine(“End k-NN demo “);
 Console.ReadLine();
}

There aren’t any good rules of thumb for determining the value
of k when using k-NN classification. The value of k in k-NN
classification is a hyperparameter and must be determined by
intuition and experimentation.

Implementing the k-NN Algorithm
In very high-level pseudo-code, the k-NN classification algorithm
used by the demo is:

Compute distances from unknown to all training items
Sort the distances from nearest to farthest
Scan the k-nearest items; use a vote to determine the result

The definition of method Classify begins by computing and
storing into an array the distances between the unknown item to
classify and all training items, as shown in Figure 4.

It’s not enough to store and sort just the distances from the
unknown item to each training item, because you need to know the
class associated with each distance. The demo program defines a sim-
ple container class, named IndexAndDistance, that holds an index
to a training item and the associated distance to the unknown item:

public class IndexAndDistance : IComparable<IndexAndDistance>
{
 public int idx; // index of a training item
 public double dist; // distance to unknown
 public int CompareTo(IndexAndDistance other) {
 if (this.dist < other.dist) return -1;
 else if (this.dist > other.dist) return +1;
 else return 0;
 }
}

The class label is stored indirectly because if you know the index
of a training item, you can look up the class label in the matrix of
training data as the last cell in the row pointed to by the index.
An alternative design is to store just the class label explicitly, but
storing the training item index gives you more flexibility. Another
alternative is to explicitly store both the index and the class label.

Because k-NN needs to sort the index-distance items to deter
mine the k-nearest items, the IndexAndDistance definition
implements the IComparable interface by defining a CompareTo
method. Doing this allows you to automatically sort an array of
IndexAndDistance objects. If you refactor the demo code to a pro-
gramming language that doesn’t support auto-sorting, you’ll have
to implement a custom sort method that operates on a structure, or
implement a custom sort method that works with parallel arrays.

There are a few alternatives to sorting index-distance items—for
example, using a heap data structure—but in my opinion the increased
complexity outweighs any performance improvement you’d get.

static int Classify(double[] unknown,
 double[][] trainData, int numClasses, int k)
{
 int n = trainData.Length;
 IndexAndDistance[] info = new IndexAndDistance[n];
 for (int i = 0; i < n; ++i) {
 IndexAndDistance curr = new IndexAndDistance();
 double dist = Distance(unknown, trainData[i]);
 curr.idx = i;
 curr.dist = dist;
 info[i] = curr;
 }
...

Figure 4 Definition of the Classify Method

It’s not enough to store and sort just
the distances from the unknown

item to each training item, because
you need to know the class

associated with each distance.

1217msdn_McCaffreyTRun_v3_64-67.indd 66 11/7/17 12:16 PM

67December 2017msdnmagazine.com

After all training index-distance items are stored, they’re sorted,
and information for the k-nearest items is displayed:

Array.Sort(info); // sort by distance
Console.WriteLine("Nearest / Distance / Class");
Console.WriteLine("==========================");
for (int i = 0; i < k; ++i) {
 int c = (int)trainData[info[i].idx][2];
 string dist = info[i].dist.ToString("F3");
 Console.WriteLine("(" + trainData[info[i].idx][0] +
 "," + trainData[info[i].idx][1] + ") : " +
 dist + " " + c);
}

The class label, c, is extracted from cell [2] of a row of training
data. This assumes there are two predictor variables. A superior
approach would be to pass a numFeatures argument to method
Classify, then access cell [numFeatures].

Displaying information about the k-nearest training items is
optional, but it illustrates an advantage of k-NN classification com-
pared to many other techniques. The k-NN algorithm is somewhat
interpretable in the sense that you can determine exactly how an
unknown item was classified. Some techniques, notably neural
network classification, are difficult or impossible to interpret.

The Classify method concludes by scanning the k-nearest train-
ing items to determine a predicted class for the unknown item:

...
 int result = Vote(info, trainData, numClasses, k);
 return result;
} // Classify

Helper method Vote accepts the array of all index-distance items.
An alternative approach is to pass just the first k cells of the array.

Distance and Voting
The Classify method calls helper methods Distance and Vote.
Method Distance is defined as:

static double Distance(double[] unknown, double[] data)
{
 double sum = 0.0;
 for (int i = 0; i < unknown.Length; ++i)
 sum += (unknown[i] - data[i]) * (unknown[i] - data[i]);
 return Math.Sqrt(sum);
}

This is a simple implementation of Euclidean distance. Common
alternatives you can consider include Manhattan distance,
Mahalanobis distance and measures based on similarity, such as
the radial basis function kernel. Because k-NN needs a notion of

“nearest” and most distance metrics work with strictly numeric or
strictly non-numeric data, k-NN classification is not well-suited
for problems with mixed numeric and categorical data.

Helper method Vote is presented in Figure 5. Determining a
consensus class label from k items is a bit trickier than you might
guess. The demo uses the simplest approach, where each of the
k-nearest training items gets one vote for its class label. This
approach doesn’t take into account the distance. A common alter-
native is to weight votes by distance so that training items that are
closer to the unknown item have more influence.

The demo implementation doesn’t explicitly deal with duplicate
training-data items. Much real-life data doesn’t have an excessive
amount of duplicate data, but if your training data does include
lots of duplicates, you might want to consider removing them.

Wrapping Up
The k-NN classification algorithm is arguably one of the simplest
of all machine learning techniques. In addition to simplicity, k-NN
classification can easily deal with multi-class problems (as opposed
to some techniques that work easily only for binary classification).
Another advantage is that k-NN can easily deal with data that has
unusual characteristics, such as the dummy demo data that has
several pockets of class labels. Some techniques, such as logistic
regression and non-kernel support vector machines, can deal
only with data that is linearly separable. Two other relative advan
tages of k-NN classification are flexibility of implementation, and
interpretability of results.

On the negative side, k-NN classification doesn’t work well with
categorical data or mixed numeric and categorical data. The tech-
nique doesn’t scale well to huge data sets. And k-NN classification
is highly sensitive to the local geometry of the training data.

When I have a classification problem with strictly numeric
predictor values, and a non-huge set of training data (for example,
less than one million items), using k-NN is often my first approach.
Then I’ll try more sophisticated techniques, typically including
neural network classification. In some situations, an ensemble
approach that combines the results of k-NN classification with
neural network classification can lead to a very robust and accu-
rate prediction system.	 n

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He has
worked on several Microsoft products, including Internet Explorer and Bing.
Dr. McCaffrey can be reached at jamccaff@microsoft.com.

Thanks to the following Microsoft technical experts who reviewed this article:
Chris Lee, Ricky Loynd, Ken Tran

static int Vote(IndexAndDistance[] info, double[][] trainData,
 int numClasses, int k)
{
 int[] votes = new int[numClasses]; // One cell per class
 for (int i = 0; i < k; ++i) { // Just first k
 int idx = info[i].idx; // Which train item
 int c = (int)trainData[idx][2]; // Class in last cell
 ++votes[c];
 }

 int mostVotes = 0;
 int classWithMostVotes = 0;
 for (int j = 0; j < numClasses; ++j) {
 if (votes[j] > mostVotes) {
 mostVotes = votes[j];
 classWithMostVotes = j;
 }
 }

 return classWithMostVotes;
}

Figure 5 The Vote Method

The k-NN algorithm is somewhat
interpretable in the sense that

you can determine exactly how
an unknown item was classified.

1217msdn_McCaffreyTRun_v3_64-67.indd 67 11/7/17 12:16 PM

mailto:jamccaff@microsoft.com
http://www.msdnmagazine.com

SUPPORTED BY

magazine

PRODUCED BY

VSLive! 1998 VSLive! 2017

March 11 – 16, 2018
Bally’s Hotel & Casino

Respect the Past. Code the Future.
Visual Studio Live! (VSLive!™) Las Vegas, returns to the strip,
March 11 – 16, 2018. During this intense week of developer training,
you can sharpen your skills in everything from ASP.NET to Xamarin.

Plus, celebrate 25 years of coding innovation as we take a fun
look back at technology and training since 1993. Experience the
education, knowledge-share and networking at #VSLive25.

Untitled-3 2 11/8/17 12:12 PM

www.vslive.com/lasvegasmsdn

vslive.com/lasvegasmsdnCONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

VS2017/.NET Angular/JavaScript ASP.NET Core Xamarin Azure / Cloud

Hands-On Labs Software Practices ALM / DevOps SQL Server 2017 UWP (Windows)

DEVELOPMENT TOPICS INCLUDE:

Who Should Attend and Why
We’ve been around since 1993. What’s our

secret? YOU! Since our fi rst conference (VBITS/

VSLive!/Visual Studio Live!), tens of thousands of

developers, software architects, programmers,

engineers, designers and more have trusted us

year-in-and-year-out for unbiased and cutting-

edge education on the Microsoft Platform.

Register to code with us today!
Register by December 15 and Save $500!
Use promo code VSLDEC4

Untitled-3 3 11/8/17 12:13 PM

www.vslive.com/lasvegasmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

AGENDA AT-A-GLANCE

Use promo code VSLDEC4

START TIME END TIME Full Day Hands-On Labs: Sunday, March 11, 2018 (Separate entry fee required) Full Day Hands-On Labs: Sunday, March 11, 2018 (Separate entry fee required)

8:00 AM 9:00 AM Pre-Conference Hands-On Lab Registration - Coffee and Morning Pastries Pre-Conference Hands-On Lab Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM HOL01 Full Day Hands-On Lab: Modern Security Architecture for ASP.NET Core (Part 1)
- Brock Allen

HOL02 Full Day Hands-On Lab: From 0-60 in a
Day with Xamarin and Xamarin.Forms

- Roy Cornelissen & Marcel de Vries
HOL03 Full Day Hands-On Lab: Busy Developer’s

HOL on Angular - Ted Neward

4:00 PM 6:00 PM Conference Registration Open Conference Registration Open

START TIME END TIME Pre-Conference Workshops: Monday, March 12, 2018 (Separate entry fee required) Pre-Conference Workshops: Monday, March 12, 2018 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM HOL01 Full Day Hands-On Lab: Modern Security Architecture for ASP.NET Core (Part 2)
- Brock Allen

M02 Workshop: Developer Dive into SQL Server 2016
- Leonard Lobel

M03 Workshop: Add Intelligence to Your Solutions with
AI, Bots, and More - Brian Randell

7:00 PM 9:00 PM Dine-A-Round Dine-A-Round

START TIME END TIME Day 1: Tuesday, March 13, 2018 Day 1: Tuesday, March 13, 2018
7:00 AM 8:00 AM Registration - Coffee and Morning Pastries Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM T01 Go Serverless with Azure Functions
- Eric D. Boyd

T02 Getting Ready to Write Mobile
Applications with Xamarin - Kevin Ford

T03 Database Development with SQL Server Data Tools
- Leonard Lobel

T04 What’s New in Visual Studio 2017 for C# Developers
- Kasey Uhlenhuth

9:30 AM 10:45 AM T05 Angular 101 - Deborah Kurata T06 Lessons Learned from Real World
Xamarin.Forms Projects - Nick Landry

T07 Introduction to Azure Cosmos DB
- Leonard Lobel

T08 Using Visual Studio Mobile Center to Accelerate
Mobile Development - Kevin Ford

11:00 AM 12:00 PM KEYNOTE: .NET Everywhere and for Everyone - James Montemagno, Principal Program Manager – Xamarin, Microsoft
12:00 PM 1:00 PM Lunch Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors Dessert Break - Visit Exhibitors

1:30 PM 2:45 PM T09 Busy Developer’s Guide to Chrome
Development - Ted Neward

T10 Works On My Machine… Docker for
Developers - Chris Klug

T11 DevOps for the SQL Server Database
- Brian Randell T12 To Be Announced

3:00 PM 4:15 PM T13 Angular Component Communication
- Deborah Kurata

T14 Customizing Your UI for Mobile Devices:
Techniques to Create a Great User Experience

- Laurent Bugnion
T15 PowerShell for Developers

- Brian Randell T16 To Be Announced

4:15 PM 5:30 PM Welcome Reception Welcome Reception

START TIME END TIME Day 2: Wednesday, March 14, 2018 Day 2: Wednesday, March 14, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM
W01 The Whirlwind Tour of Authentication

and Authorization with ASP.NET Core
- Chris Klug

W02 Building Mixed Reality Experiences
for HoloLens & Immersive Headsets in Unity

- Nick Landry
W03 Using Feature Toggles to Separate Releases

from Deployments - Marcel de Vries
W04 Lock the Doors, Secure the Valuables,

and Set the Alarm - Eric D. Boyd

9:30 AM 10:45 AM W05 TypeScript: The Future of Front End
Web Development - Ben Hoelting

W06 A Dozen Ways to Mess Up Your
Transition From Windows Forms to XAML

- Billy Hollis
W07 Overcoming the Challenges of Mobile

Development in the Enterprise - Roy Cornelissen
W08 Computer, Make It So!

- Veronika Kolesnikova & Willy Ci

11:00 AM 12:00 PM General Session: To Be Announced - Kasey Uhlenhuth, Program Manager, .NET & Visual Studio, Microsoft
12:00 PM 1:00 PM Birds-of-a-Feather Lunch Birds-of-a-Feather Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors - Exhibitor Raffle @ 1:15pm (Must be present to win) Dessert Break - Visit Exhibitors - Exhibitor Raffle @ 1:15pm (Must be present to win)

1:30 PM 1:50 PM W09 Fast Focus: 0-60 for Small Projects in Visual Studio Team Services
- Alex Mullans

W10 Fast Focus: Cross Platform Device Testing
with xUnit - Oren Novotny

W11 Fast Focus: Understanding .NET Standard
- Jason Bock

2:00 PM 2:20 PM W12 Fast Focus: HTTP/2: What You Need to Know
- Robert Boedigheimer

W13 Fast Focus: Serverless Computing: Azure Functions
and Xamarin in 20 minutes - Laurent Bugnion W14 Fast Focus: TBD - Scott Klein

2:30 PM 3:45 PM W15 Advanced Fiddler Techniques
- Robert Boedigheimer

W16 Building Cross-Platforms Business Apps
with C# and CSLA .NET - Rockford Lhotka

W17 Versioning NuGet and npm Packages
- Alex Mullans

W18 Getting to the Core of .NET Core
- Adam Tuliper

4:00 PM 5:15 PM W19 Assembling the Web - A Tour of
WebAssembly - Jason Bock

W20 Radically Advanced XAML: Dashboards,
Timelines, Animation, and More - Billy Hollis

W21 Encrypting the Web
- Robert Boedigheimer

W22 Porting MVVM Light to .NET Standard:
Lessons Learned - Laurent Bugnion

START TIME END TIME Day 3: Thursday, March 15, 2018 Day 3: Thursday, March 15, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM TH01 ASP.NET Core 2 For Mere Mortals
- Philip Japikse

TH02 Performance in 60 Seconds – SQL
Tricks Everybody MUST Know - Pinal Dave

TH03 Demystifying Microservice Architecture
- Miguel Castro

TH04 Cognitive Services in Xamarin Applications
- Veronika Kolesnikova

9:30 AM 10:45 AM TH05 Getting to the Core of ASP.NET Core
Security - Adam Tuliper

TH06 Secrets of SQL Server - Database
Worst Practices - Pinal Dave

TH07 Unit Testing Makes Me Faster: Convincing Your
Boss, Your Co-Workers, and Yourself - Jeremy Clark

TH08 Publish Your Angular App to Azure App Services
- Brian Noyes

11:00 AM 12:00 PM Panel Discussion: To Be Announced Panel Discussion: To Be Announced

12:00 PM 1:00 PM Lunch Lunch

1:00 PM 2:15 PM TH09 Entity Framework Core 2
For Mere Mortals - Philip Japikse

TH10 SQL Server 2017 - Intelligence Built-in
- Scott Klein

TH11 Writing Testable Code and Resolving
Dependencies - DI Kills Two Birds with One Stone

- Miguel Castro
TH12 Signing Your Code the Easy Way

- Oren Novotny

2:30 PM 3:45 PM TH13 MVVM and ASP.NET Core Razor Pages
- Ben Hoelting

TH14 Introduction to Azure Machine
Learning - James McCaffrey

TH15 “Doing DevOps” as a Politically
Powerless Developer - Damian Brady TH16 Analyzing Code in .NET - Jason Bock

4:00 PM 5:15 PM TH17 Securing Web Apps and APIs
with IdentityServer - Brian Noyes

TH18 Introduction to the CNTK v2 Machine
Learning Library - James McCaffrey

TH19 I’ll Get Back to You: Task, Await, and
Asynchronous Methods - Jeremy Clark

TH20 Multi-targeting the World: A Single Project
to Rule Them All - Oren Novotny

START TIME END TIME Post-Conference Workshops: Friday, March 16, 2018 (Separate entry fee required) Post-Conference Workshops: Friday, March 16, 2018 (Separate entry fee required)

7:30 AM 8:00 AM Post-Conference Workshop Registration - Coffee and Morning Pastries Post-Conference Workshop Registration - Coffee and Morning Pastries

8:00 AM 5:00 PM F01 Workshop: Creating Mixed Reality Experiences for HoloLens & Immersive Headsets
with Unity - Nick Landry & Adam Tuliper

F02 Workshop: Distributed Cross-Platform Application
Architecture - Jason Bock & Rockford Lhotka

F03 Workshop: UX Design for Developers:
Basics of Principles and Process - Billy Hollis

Speakers and sessions subject to change

ALM / DevOps Cloud Computing Database and Analytics Native Client Software
Practices

Visual Studio /
.NET Framework Web Client Web ServerBACK BY POPULAR DEMAND

Sunday Pre-Con
Hands-On Labs
Choose From:

HOL01 Special 2-Day Hands-
On Lab: Modern Security
Architecture for ASP.NET Core
Sunday, March 11,
9:00am – 6:00pm (Part 1)*

Monday, March 12,
9:00am – 6:00pm (Part 2)*

Brock Allen
You will learn:
> The security architecture of

ASP.NET Core
> About authenticating users

with OpenID Connect
> How to protect Web APIs

with OAuth2
* This 2-day Hands-On Lab is available with

the six-day conference package or on its
own. Details at vslive.com/lasvegasmsdn.

HOL02 From 0-60 in a Day with
Xamarin and Xamarin.Forms
Introductory / Intermediate
Sunday, March 11,
9:00am – 6:00pm

Roy Cornelissen & Marcel de Vries
You will learn:
> How to build your first mobile

apps on three platforms with the
Xamarin framework

> How to maintain platform
uniqueness while sharing a
large chunk of your codebase

> How to think “mobile first” in
your application architecture

HOL03 Busy Developer’s
HOL on Angular
Sunday, March 11,
9:00am – 6:00pm

Ted Neward
In this Hands-On Lab, we’ll start
from zero, with a little TypeScript,
then start working with Angular 2:
its core constructs and how it works
with components, modules, and of
course the ubiquitous model/view/
controller approach.

ONLY $595 through December 15
Applies to HOL02 and HOL03 only.

Untitled-3 4 11/8/17 12:13 PM

www.vslive.com/lasvegasmsdn
www.vslive.com/lasvegasmsdn

Bally’s Hotel & Casino
will play host to
Visual Studio Live!, and
is offering a special
reduced room rate to
conference attendees.

CONNECT WITH
VISUAL STUDIO LIVE!

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com/lasvegasmsdn

START TIME END TIME Full Day Hands-On Labs: Sunday, March 11, 2018 (Separate entry fee required) Full Day Hands-On Labs: Sunday, March 11, 2018 (Separate entry fee required)

8:00 AM 9:00 AM Pre-Conference Hands-On Lab Registration - Coffee and Morning Pastries Pre-Conference Hands-On Lab Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM HOL01 Full Day Hands-On Lab: Modern Security Architecture for ASP.NET Core (Part 1)
- Brock Allen

HOL02 Full Day Hands-On Lab: From 0-60 in a
Day with Xamarin and Xamarin.Forms

- Roy Cornelissen & Marcel de Vries
HOL03 Full Day Hands-On Lab: Busy Developer’s

HOL on Angular - Ted Neward

4:00 PM 6:00 PM Conference Registration Open Conference Registration Open

START TIME END TIME Pre-Conference Workshops: Monday, March 12, 2018 (Separate entry fee required) Pre-Conference Workshops: Monday, March 12, 2018 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM HOL01 Full Day Hands-On Lab: Modern Security Architecture for ASP.NET Core (Part 2)
- Brock Allen

M02 Workshop: Developer Dive into SQL Server 2016
- Leonard Lobel

M03 Workshop: Add Intelligence to Your Solutions with
AI, Bots, and More - Brian Randell

7:00 PM 9:00 PM Dine-A-Round Dine-A-Round

START TIME END TIME Day 1: Tuesday, March 13, 2018 Day 1: Tuesday, March 13, 2018
7:00 AM 8:00 AM Registration - Coffee and Morning Pastries Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM T01 Go Serverless with Azure Functions
- Eric D. Boyd

T02 Getting Ready to Write Mobile
Applications with Xamarin - Kevin Ford

T03 Database Development with SQL Server Data Tools
- Leonard Lobel

T04 What’s New in Visual Studio 2017 for C# Developers
- Kasey Uhlenhuth

9:30 AM 10:45 AM T05 Angular 101 - Deborah Kurata T06 Lessons Learned from Real World
Xamarin.Forms Projects - Nick Landry

T07 Introduction to Azure Cosmos DB
- Leonard Lobel

T08 Using Visual Studio Mobile Center to Accelerate
Mobile Development - Kevin Ford

11:00 AM 12:00 PM KEYNOTE: .NET Everywhere and for Everyone - James Montemagno, Principal Program Manager – Xamarin, Microsoft
12:00 PM 1:00 PM Lunch Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors Dessert Break - Visit Exhibitors

1:30 PM 2:45 PM T09 Busy Developer’s Guide to Chrome
Development - Ted Neward

T10 Works On My Machine… Docker for
Developers - Chris Klug

T11 DevOps for the SQL Server Database
- Brian Randell T12 To Be Announced

3:00 PM 4:15 PM T13 Angular Component Communication
- Deborah Kurata

T14 Customizing Your UI for Mobile Devices:
Techniques to Create a Great User Experience

- Laurent Bugnion
T15 PowerShell for Developers

- Brian Randell T16 To Be Announced

4:15 PM 5:30 PM Welcome Reception Welcome Reception

START TIME END TIME Day 2: Wednesday, March 14, 2018 Day 2: Wednesday, March 14, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM
W01 The Whirlwind Tour of Authentication

and Authorization with ASP.NET Core
- Chris Klug

W02 Building Mixed Reality Experiences
for HoloLens & Immersive Headsets in Unity

- Nick Landry
W03 Using Feature Toggles to Separate Releases

from Deployments - Marcel de Vries
W04 Lock the Doors, Secure the Valuables,

and Set the Alarm - Eric D. Boyd

9:30 AM 10:45 AM W05 TypeScript: The Future of Front End
Web Development - Ben Hoelting

W06 A Dozen Ways to Mess Up Your
Transition From Windows Forms to XAML

- Billy Hollis
W07 Overcoming the Challenges of Mobile

Development in the Enterprise - Roy Cornelissen
W08 Computer, Make It So!

- Veronika Kolesnikova & Willy Ci

11:00 AM 12:00 PM General Session: To Be Announced - Kasey Uhlenhuth, Program Manager, .NET & Visual Studio, Microsoft
12:00 PM 1:00 PM Birds-of-a-Feather Lunch Birds-of-a-Feather Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors - Exhibitor Raffle @ 1:15pm (Must be present to win) Dessert Break - Visit Exhibitors - Exhibitor Raffle @ 1:15pm (Must be present to win)

1:30 PM 1:50 PM W09 Fast Focus: 0-60 for Small Projects in Visual Studio Team Services
- Alex Mullans

W10 Fast Focus: Cross Platform Device Testing
with xUnit - Oren Novotny

W11 Fast Focus: Understanding .NET Standard
- Jason Bock

2:00 PM 2:20 PM W12 Fast Focus: HTTP/2: What You Need to Know
- Robert Boedigheimer

W13 Fast Focus: Serverless Computing: Azure Functions
and Xamarin in 20 minutes - Laurent Bugnion W14 Fast Focus: TBD - Scott Klein

2:30 PM 3:45 PM W15 Advanced Fiddler Techniques
- Robert Boedigheimer

W16 Building Cross-Platforms Business Apps
with C# and CSLA .NET - Rockford Lhotka

W17 Versioning NuGet and npm Packages
- Alex Mullans

W18 Getting to the Core of .NET Core
- Adam Tuliper

4:00 PM 5:15 PM W19 Assembling the Web - A Tour of
WebAssembly - Jason Bock

W20 Radically Advanced XAML: Dashboards,
Timelines, Animation, and More - Billy Hollis

W21 Encrypting the Web
- Robert Boedigheimer

W22 Porting MVVM Light to .NET Standard:
Lessons Learned - Laurent Bugnion

START TIME END TIME Day 3: Thursday, March 15, 2018 Day 3: Thursday, March 15, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM TH01 ASP.NET Core 2 For Mere Mortals
- Philip Japikse

TH02 Performance in 60 Seconds – SQL
Tricks Everybody MUST Know - Pinal Dave

TH03 Demystifying Microservice Architecture
- Miguel Castro

TH04 Cognitive Services in Xamarin Applications
- Veronika Kolesnikova

9:30 AM 10:45 AM TH05 Getting to the Core of ASP.NET Core
Security - Adam Tuliper

TH06 Secrets of SQL Server - Database
Worst Practices - Pinal Dave

TH07 Unit Testing Makes Me Faster: Convincing Your
Boss, Your Co-Workers, and Yourself - Jeremy Clark

TH08 Publish Your Angular App to Azure App Services
- Brian Noyes

11:00 AM 12:00 PM Panel Discussion: To Be Announced Panel Discussion: To Be Announced

12:00 PM 1:00 PM Lunch Lunch

1:00 PM 2:15 PM TH09 Entity Framework Core 2
For Mere Mortals - Philip Japikse

TH10 SQL Server 2017 - Intelligence Built-in
- Scott Klein

TH11 Writing Testable Code and Resolving
Dependencies - DI Kills Two Birds with One Stone

- Miguel Castro
TH12 Signing Your Code the Easy Way

- Oren Novotny

2:30 PM 3:45 PM TH13 MVVM and ASP.NET Core Razor Pages
- Ben Hoelting

TH14 Introduction to Azure Machine
Learning - James McCaffrey

TH15 “Doing DevOps” as a Politically
Powerless Developer - Damian Brady TH16 Analyzing Code in .NET - Jason Bock

4:00 PM 5:15 PM TH17 Securing Web Apps and APIs
with IdentityServer - Brian Noyes

TH18 Introduction to the CNTK v2 Machine
Learning Library - James McCaffrey

TH19 I’ll Get Back to You: Task, Await, and
Asynchronous Methods - Jeremy Clark

TH20 Multi-targeting the World: A Single Project
to Rule Them All - Oren Novotny

START TIME END TIME Post-Conference Workshops: Friday, March 16, 2018 (Separate entry fee required) Post-Conference Workshops: Friday, March 16, 2018 (Separate entry fee required)

7:30 AM 8:00 AM Post-Conference Workshop Registration - Coffee and Morning Pastries Post-Conference Workshop Registration - Coffee and Morning Pastries

8:00 AM 5:00 PM F01 Workshop: Creating Mixed Reality Experiences for HoloLens & Immersive Headsets
with Unity - Nick Landry & Adam Tuliper

F02 Workshop: Distributed Cross-Platform Application
Architecture - Jason Bock & Rockford Lhotka

F03 Workshop: UX Design for Developers:
Basics of Principles and Process - Billy Hollis

Speakers and sessions subject to change

ALM / DevOps Cloud Computing Database and Analytics Native Client Software
Practices

Visual Studio /
.NET Framework Web Client Web Server

 March 11 – 16, 2018
Bally’s Hotel & Casino

Untitled-3 5 11/8/17 12:13 PM

www.vslive.com/lasvegasmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine72

“Don’t leave us in suspense, Plattski,” readers begged me. I’d written
two pieces (msdn.com/magazine/mt808507 and msdn.com/magazine/
mt809122) about how my Advanced UX class had designed a mo-
bile app for Isaac “Zak” Kohane, M.D., Ph.D., who is chairman of
Bioinformatics at Harvard Medical School. He’d had some success
providing precision care to his mother, who suffers from conges-
tive heart failure (CHF). He used a Fitbit Aria scale to monitor
her weight via the Web, so he could detect excess water retention
and intervene before it degraded her heart function. The system
worked, but he wanted a mobile app that would be easier to use
and would allow him to store notes about his clinical encounters.
(See his article at wbur.fm/2yLf2SR.)

“It was a great UX project,” my readers asked, “but did you just
leave it as a bundle of paper?”

Heck, no. Zak’s vision made for an ideal project for my Harvard
Summer Session class on Xamarin Forms. I challenged my students
to take the sketches my earlier class had developed and build them
into the mobile app that Zak wanted.

Xamarin Forms is a front-end toolkit that allows developers to
write a single C# code base and run it on iOS and Android and
Universal Windows Platform (UWP). Drag a button onto a form,
and Xamarin automatically renders it in iPhone format when it runs
on an iPhone, and in Android format when it runs on an Android
device. It’s not perfect, and it’s not without growing pains, but in my
opinion it has passed the tipping point at which it beats the alter-
natives. And it will only get better from here (I hope).

I used Microsoft HealthVault for the back end. It’s a free medical
database that lives in the cloud. Any authorized app can use it (see
bit.ly/2zKcjHL). I especially needed its ability to upload data from smart
devices, such as Zak’s mother’s weight scale. It worked well for us.

My students came from all over—from Romania, Moldova and
Turkey; from, Brazil and India; from Texas and California. I insisted
that my classroom be neutral territory—anyone needing to fight
had to take it outside. But they didn’t. It was beautiful to see the
technical challenge enthrall them, to see them rise to it, to watch
the Microsoft guy and the Amazon guy work together to blow this
project away. Every day I exhorted them, “Come on you guys, 3,000
people got admitted to the hospital for CHF just today! They’re
counting on us, let’s get this done.”

Most students came from industry, but one young lady was an
undergraduate junior in Computer Science. You know Computer

Science degrees—theories of compiler design, Turing-complete
algorithms, abstract stuff like that. Nothing in it had prepared
her for the howling chaos that is modern software development.
Instead of turning up her nose, she dove right in and sweated blood
alongside us Neanderthal geeks, earning her A grade. I told her:
“Sena, you’ve been bitten by the werewolf. You’re one of us now.
Welcome, and may God have mercy on you.” I wonder how she’s
buckling down to her theory classes this fall.

We dove into another killer three-week session, like last January—
staying late every night, then taking work home; banging, banging,
banging to get all these pieces to work together in ways that they
hadn’t previously and didn’t quite want to. For example, HealthVault’s
client SDK used .NET Standard, while Xamarin was just then
acquiring this capability. We never could have succeeded without
the brainpower and commitment of these particular students.

“Better Doctors”
Zak came to the final presentations, as did Miguel de Icaza,
Xamarin’s co-founder and CTO. Zak loved seeing these great
tools—as he put it, “Something like this would make us better doc-
tors.” Miguel loved seeing his creation helping people. And I loved
showing off what my students had accomplished. Here’s a video
look for you: youtu.be/379YjTKda7o.

So where to now? Zak has been using the app and we’ll soon
see what changes he needs. We’re hoping to interest a dozen or
so other doctors for a quick trial in the spring. Let me know if
you want to take part, or know anyone who does. We’ll present
the results in June at Zak’s annual Precision Medicine conference
(bit.ly/2y6s26S), and go from there.

Ultimately, I’d love to make this an open source project. But
making things free costs money. How about Microsoft sponsors it
equally from the HealthVault and Xamarin units? Zak will bring
the medical firepower. And Microsoft can pay me to manage it. It’ll
be a flagship project for all concerned. How about it, Microsoft?	 n

David S. Platt teaches programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Software Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Software Legend in 2002. He wonders whether he should tape down two
of his daughter’s fingers so she learns how to count in octal. You can contact him
at rollthunder.com.

Crushing It

Don’t Get Me Started DAVID S. PLATT

1217msdn_PlattDGMS_v3_72.indd 72 11/7/17 12:18 PM

https://msdn.com/magazine/mt808507
http://msdn.com/magazine/mt809122
http://msdn.com/magazine/mt809122
http://wbur.fm/2yLf2SR
www.bit.ly/2zKcjHL
http://youtu.be/379YjTKda7o
www.bit.ly/2y6s26S
www.rollthunder.com

| Developer Solutions

Empower your development.
Build better apps.
GrapeCity’s family of products provides developers, designers, and architects with the
ultimate collection of easy-to-use tools for building sleek, high-performing, feature-complete
applications. With over 25 years of experience, we understand your needs and offer the
industry’s best support. Our team is your team.

.NET UI CONTROLS REPORTING SOLUTIONS SPREADSHEET SOLUTIONS JAVASCRIPT UI CONTROLS

© 2017 GrapeCity, Inc. All rights reserved. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Learn more and get free 30-day trials at GrapeCity.com
For more information: 1.800.858.2739

Untitled-3 1 11/6/17 12:48 PM

www.GrapeCity.com

Untitled-13 1 11/6/17 6:30 PM

www.syncfusion.com/msdnxamarin

	Back
	Print
	MSDN Magazine, December 2017
	Cover Tip
	Front
	Back

	Contents
	FEATURES
	Modernize a .NET App with Docker and Windows Server Containers
	A Developer’s Guide to the New Hamburger Menu in Windows 10
	Customizing Visual Studio for Mac
	Using Cognitive Services in Mixed Reality
	Visual C++ Support for Stack-Based Buffer Protection

	COLUMNS
	EDITOR'S NOTE: Hamburger Helper
	UPSTART: Managing the Manager: 15 Tips for Working Better
	DATA POINTS: Building UWP Apps for Local and Cloud Data Storage
	THE WORKING PROGRAMMER: How to be MEAN: Angular Forms, Too
	ARTIFICIALLY INTELLIGENT: Exploring the Azure Machine Learning Workbench
	CUTTING EDGE: Configuring ASP.NET Core Applications
	TEST RUN: Understanding k-NN Classification Using C#
	DON’T GET ME STARTED: Crushing It

